OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 22 — Oct. 26, 2009
  • pp: 19960–19968

Laser direct writing using submicron-diameter fibers

Feng Tian, Guoguang Yang, Jian Bai, Jianfeng Xu, Changlun Hou, Yiyong Liang, and Kaiwei Wang  »View Author Affiliations


Optics Express, Vol. 17, Issue 22, pp. 19960-19968 (2009)
http://dx.doi.org/10.1364/OE.17.019960


View Full Text Article

Enhanced HTML    Acrobat PDF (2095 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, a novel direct writing technique using submicron-diameter fibers is presented. The submicron-diameter fiber probe serves as a tightly confined point source and it adopts micro touch mode in the process of writing. The energy distribution of direct writing model is analyzed by Three-Dimension Finite-Difference Time-Domain method. Experiments demonstrate that submicron-diameter fiber direct writing has some advantages: simple process, 350-nm-resolution (lower than 442-nm-wavelength), large writing area, and controllable width of lines. In addition, by altering writing direction of lines, complex submicron patterns can be fabricated.

© 2009 OSA

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(140.3510) Lasers and laser optics : Lasers, fiber
(230.4000) Optical devices : Microstructure fabrication
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: September 3, 2009
Revised Manuscript: September 29, 2009
Manuscript Accepted: September 30, 2009
Published: October 19, 2009

Citation
Feng Tian, Guoguang Yang, Jian Bai, Jianfeng Xu, Changlun Hou, Yiyong Liang, and Kaiwei Wang, "Laser direct writing using submicron-diameter fibers," Opt. Express 17, 19960-19968 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-22-19960


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Tamada, T. Doumuki, T. Yamaguchi, and S. Matsumoto, “Al wire-grid polarizer using the s-polarization resonance effect at the 0.8-μm-wavelength band,” Opt. Lett. 22(6), 419–421 (1997), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-22-6-419 . [CrossRef] [PubMed]
  2. H. F. Yang, M. Zhou, J. Dai, J. K. Di, and E. L. Zhao, “Performance testing of log pile photonic crystal fast-fabricated by direct femtosecond laser writing,” Chin. Opt. Lett. 6, 864–867 (2008), http://www.opticsinfobase.org/col/abstract.cfm?URI=col-6-11-864 . [CrossRef]
  3. S. A. Slattery, D. N. Nikogosyan, and G. Brambilla, “Fiber Bragg grating inscription by high-intensity femtosecond UV laser light: comparison with other existing methods of fabrication,” J. Opt. Soc. Am. B 22(2), 354–361 (2005), http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-22-2-354 . [CrossRef]
  4. H. C. Tapalian, J. Langseth, Y. Chen, J. W. Anderegg, and J. Shinar, “Ultrafast laser direct-write actuable microstructures,” Appl. Phys. Lett. 93(24), 243304 (2008), http://link.aip.org/link/?APPLAB/93/243304/1 . [CrossRef]
  5. R. A. Becker, B. L. Sopori, and W. S. C. Chang, “Focused laser lithographic system,” Appl. Opt. 17(7), 1069–1071 (1978), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-17-7-1069 . [CrossRef] [PubMed]
  6. M. Svalgaard, C. V. Poulsen, A. Bjarklev, and O. Poulsen, “Direct UV writing of buried singlemode channel waveguides in Ge-doped silica films,” Electron. Lett. 30(17), 1401–1403 (1994). [CrossRef]
  7. W. X. Yu, X.-C. Yuan, N. Q. Ngo, W. X. Que, W. C. Cheong, and V. Koudriachov, “Single-step fabrication of continuous surface relief micro-optical elements in hybrid sol-gel glass by laser direct writing,” Opt. Express 10(10), 443–448 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-10-443 . [PubMed]
  8. H. B. Sun and S. Kawata, “Two-photon laser precision microfabrication and its applications to micro-nano devices and systems,” J. Lightwave Technol. 21(3), 624–633 (2003), http://www.opticsinfobase.org/JLT/abstract.cfm?URI=JLT-21-3-624 . [CrossRef]
  9. W. Yang, C. Corbari, P. G. Kazansky, K. Sakaguchi, and I. C. Carvalho, “Low loss photonic components in high index bismuth borate glass by femtosecond laser direct writing,” Opt. Express 16(20), 16215–16226 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-20-16215 . [CrossRef] [PubMed]
  10. L. Mutter, M. Koechlin, M. Jazbinsek, and P. Günter, “Direct electron beam writing of channel waveguides in nonlinear optical organic crystals,” Opt. Express 15(25), 16828–16838 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-25-16828 . [CrossRef] [PubMed]
  11. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003), http://www.nature.com/nature/journal/v426/n6968/abs/nature02193.html . [CrossRef] [PubMed]
  12. L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-6-1025 . [CrossRef] [PubMed]
  13. M. Wu, W. Q. Huang, and L. L. Wang, “Propagation characteristics of the silica and silicon subwavelength-diameter hollow wire waveguides,” Chin. Opt. Lett. 6, 732–735 (2008), http://www.opticsinfobase.org/col/abstract.cfm?URI=col-6-10-732 . [CrossRef]
  14. W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005), http://link.aip.org/link/?APPLAB/86/151122/1 . [CrossRef]
  15. Y. H. Li and L. M. Tong, “Mach-Zehnder interferometers assembled with optical microfibers or nanofibers,” Opt. Lett. 33(4), 303–305 (2008), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-33-4-303 . [CrossRef] [PubMed]
  16. X. S. Jiang, Y. Chen, G. Vienne, and L. M. Tong, “All-fiber add-drop filters based on microfiber knot resonators,” Opt. Lett. 32(12), 1710–1712 (2007), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-32-12-1710 . [CrossRef] [PubMed]
  17. M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett. 86(16), 161108 (2005), http://link.aip.org/link/?APPLAB/86/161108/1 . [CrossRef]
  18. X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. J. Zhang, and L. L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89(14), 143513 (2006), http://link.aip.org/link/?APPLAB/89/143513/1 . [CrossRef]
  19. W. Tan, Z. Y. Shi, S. Smith, D. Birnbaum, and R. Kopelman, “Submicrometer intracellular chemical optical fiber sensors,” Science 258(5083), 778–781 (1992), http://www.sciencemag.org/cgi/content/abstract/258/5083/778 . [CrossRef] [PubMed]
  20. G. Brambilla and F. Xu, “Adiabatic submicrometric tapers for optical tweezers,” Electron. Lett. 43(4), 204–205 (2007). [CrossRef]
  21. Y. Li and X. Bao, “The observation of comblike transmission spectrum from a tapered single mode fiber tip,” Appl. Phys. Lett. 93(26), 261107 (2008), http://link.aip.org/link/?APPLAB/93/261107/1 . [CrossRef]
  22. Y. Zhu, X. Chen, and A. Wang, “Observation of interference in a fiber taper interferometer with a subwavelength tip and its sensing applications,” Opt. Lett. 34(18), 2808–2810 (2009), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-34-18-2808 . [CrossRef] [PubMed]
  23. I. I. Smolyaninov, D. L. Mazzoni, and C. C. Davis, “Near-field direct-write ultraviolet lithography and shear force microscopic studies of the lithographic process,” Appl. Phys. Lett. 67(26), 3859–3861 (1995), http://link.aip.org/link/?APPLAB/67/3859/1 . [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited