OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 22 — Oct. 26, 2009
  • pp: 19981–19987

Grayscale photomask fabricated by laser direct writing in metallic nano-films

Chuan Fei Guo, Sihai Cao, Peng Jiang, Ying Fang, Jianming Zhang, Yongtao Fan, Yongsheng Wang, Wendong Xu, Zhensheng Zhao, and Qian Liu  »View Author Affiliations

Optics Express, Vol. 17, Issue 22, pp. 19981-19987 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (3884 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The grayscale photomask plays a key role in grayscale lithography for creating 3D microstructures like micro-optical elements and MEMS structures, but how to fabricate grayscale masks in a cost-effective way is still a big challenge. Here we present novel low cost grayscale masks created in a two-step method by laser direct writing on Sn nano-films, which demonstrate continuous-tone gray levels depended on writing powers. The mechanism of the gray levels is due to the coexistence of the metal and the oxides formed in a laser-induced thermal process. The photomasks reveal good technical properties in fabricating 3D microstructures for practical applications.

© 2009 OSA

OCIS Codes
(160.3900) Materials : Metals
(160.4236) Materials : Nanomaterials
(310.6845) Thin films : Thin film devices and applications
(110.6895) Imaging systems : Three-dimensional lithography

ToC Category:

Original Manuscript: September 18, 2009
Revised Manuscript: October 10, 2009
Manuscript Accepted: October 10, 2009
Published: October 19, 2009

Chuan Fei Guo, Sihai Cao, Peng Jiang, Ying Fang, Jianming Zhang, Yongtao Fan, Yongsheng Wang, Wendong Xu, Zhensheng Zhao, and Qian Liu, "Grayscale photomask fabricated by laser direct writing in metallic nano-films," Opt. Express 17, 19981-19987 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Rogers, A. H. O. Kärkkäinen, T. Tkaczyk, J. T. Rantala, and M. R. Descour, “Realization of refractive microoptics through grayscale lithographic patterning of photosensitive hybrid glass,” Opt. Express 12(7), 1294–1303 (2004), http://www.osa-jon.org/viewmedia.cfm?id=79451&seq=0 . [CrossRef] [PubMed]
  2. K. Reimer, H. J. Quenzer, M. Jürss, and B. Wagner, “Micro-optic fabrication using one-level gray-tone lithography,” Proc. SPIE 3008, 279–288 (1997), http://www.mp-cc.de/docs/reiphot.pdf . [CrossRef]
  3. H. Jiang, X. Yuan, Z. Yun, Y. C. Chan, and Y. L. Lam, “Fabrication of microlens in photosensitive hybrid sol–gel films using a gray scale mask,” Mater. Sci. Eng. C 99, 16 (2001).
  4. M. Christophersen and B. F. Phlips, “Gray-tone lithography using an optical diffuser and a contact aligner,” Appl. Phys. Lett. 92(19), 194102 (2008). [CrossRef]
  5. C. Gimkiewicz, D. Hagedorn, J. Jahns, E.-B. Kley, and F. Thoma, “Fabrication of microprisms for planar optical interconnections by use of analog gray-scale lithography with high-energy-beam-sensitive glass,” Appl. Opt. 38(14), 2986–2990 (1999). [CrossRef]
  6. C. M. Waits, B. Morgan, M. Kastantin, and R. Ghodssi, “Microfabrication of 3D silicon MEMS structures using gray-scale lithography and deep reactive ion etching,” Sens. Actuators A Phys. 119(1), 245–253 (2005). [CrossRef]
  7. C. M. Waits, A. Modafe, and R. Ghodssi, “Investigation of gray-scale technology for large area 3D silicon MEMS structures,” J. Micromech. Microeng. 13(2), 170–177 (2003). [CrossRef]
  8. G. Gal, “Method for fabricating microlenses,” U.S. Patent No. 5,310,623, 10, (1994).
  9. C. K. Wu, “Method of making high energy beam sensitive glasses,” U.S. Patent, No. 5,078,771 (1992).
  10. C. Chen, D. Hirdes, and A. Folch, “Gray-scale photolithography using microfluidic photomasks,” Proc. Natl. Acad. Sci. U.S.A. 100(4), 1499–1504 (2003), http://www.pnas.org/cgi/content/full/100/4/1499 . [CrossRef] [PubMed]
  11. Z. L. Wang and Z. Pan, “Junctions and networks of SnO nanoribbons,” Adv. Mater. 14(15), 1029–1032 (2002), http://www.nanoscience.gatech.edu/zlwang/paper/2002/02_AM_2.pdf . [CrossRef]
  12. Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of semiconducting oxides,” Science 291(5510), 1947–1949 (2001). [CrossRef] [PubMed]
  13. A. F. Lee and R. M. Lambert, “Oxidation of Sn overlayers and the structure and stability of Sn oxide films on Pd (111),” Phys. Rev. B 58(7), 4156–4165 (1998). [CrossRef]
  14. X. Q. Pan and L. Fu, “Oxidation and phase transitions of epitaxial tin oxide thin films on (10-12) sapphire,” J. Appl. Phys. 89(11), 6048 (2001). [CrossRef]
  15. J. Arbiol, E. Comini, G. Faglia, G. Sberveglieri, and J. R. Morante, “Orthorhombic Pbcn SnO2 nanowires for gas sensing applications,” J. Cryst. Growth 310(1), 253–260 (2008). [CrossRef]
  16. Y. X. Chen, L. J. Campbell, and W. L. Zhou, “Self-catalytic branch growth of SnO2 nanowire junctions,” J. Cryst. Growth 270(3-4), 505–510 (2004). [CrossRef]
  17. A. Kolmakov, Y. Zhang, and M. Moskovits, “Topotactic thermal oxidation of Sn nanowires: Intermediate suboxides and core-shell metastable structures,” Nano Lett. 3(8), 1125–1129 (2003). [CrossRef]
  18. M. Batzill and U. Diebold, “The surface and materials science of tin oxide,” Prog. Surf. Sci. 79(2-4), 47–154 (2005), http://shell.cas.usf.edu/~mbatzill/papers/paper%207.pdf . [CrossRef]
  19. E. P. Domashevskaya, O. A. Chuvenkova, V. M. Kashkarov, S. B. Kushev, S. V. Ryabtsev, S. Yu. Turishchev, and Yu. A. Yurakov, “TEM and XANES investigations and optical properties of SnO nanolayers,” Surf. Interface Anal. 38(4), 514–517 (2006). [CrossRef]
  20. C. F. Guo, Z. Zhang, S. Cao, and Q. Liu, “Laser direct writing of nanoreliefs in Sn nanofilms,” Opt. Lett. 34(18), 2820–2822 (2009). [CrossRef] [PubMed]
  21. J. Zhao, L. H. Huo, S. Gao, H. Zhao, and J. G. Zhao, “Alcohols and acetone sensing properties of SnO2 thin films deposited by dip-coating,” Sens. Actuators B Chem. 115(1), 460–464 (2006). [CrossRef]
  22. F. J. Lamelas and S. A. Reid, “Thin-film synthesis of the orthorhombic phase of SnO2,” Phys. Rev. B 60(13), 9347–9352 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited