OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 22 — Oct. 26, 2009
  • pp: 19988–19995

Optically controllable side-polished fiber attenuator with photoresponsive liquid crystal overlay

Vincent K. S. Hsiao, Zhen Li, Zhe Chen, Peng-Chun Peng, and JieYuan Tang  »View Author Affiliations


Optics Express, Vol. 17, Issue 22, pp. 19988-19995 (2009)
http://dx.doi.org/10.1364/OE.17.019988


View Full Text Article

Enhanced HTML    Acrobat PDF (1118 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This study presents an optically controllable fiber-optic attenuator consisting of side-polished fiber (SPF) with a photoresponsive liquid crystal (LC) overlay operating in the telecommunication wavelength. Attenuation is controlled by a photochemical-induced phase transition of photoresponsive LC, which modulates the evanescent field leaked from the polished area. Before optical field illumination, the photoresponsive LCs are in the light-scattering state and attenuation is high. During photoirradiation, the formation of cis-azobenzene LC disrupts the nematic host and generates a light-transparent state in which the optical loss of the SPF attenuator decreases. The photoinduced tuning range is 15 dB at an environmental temperature of 45 °C, and a repeatable and reversible tuning is observed with a response time of less than 5 s. The proposed all-optical controllable attenuator has potential use as an optical signal modulator in an all-fiber telecommunication system.

© 2009 OSA

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(230.1150) Optical devices : All-optical devices
(230.4110) Optical devices : Modulators

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: September 17, 2009
Revised Manuscript: October 11, 2009
Manuscript Accepted: October 15, 2009
Published: October 19, 2009

Citation
Vincent K. S. Hsiao, Zhen Li, Zhe Chen, Peng-Chun Peng, and JieYuan Tang, "Optically controllable side-polished fiber attenuator with photoresponsive liquid crystal overlay," Opt. Express 17, 19988-19995 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-22-19988


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. M. Dziedzic, A. Ashkin, R. H. Stolen, and J. R. Simpson, “Tension-adjusted in-line optical-fiber attenuator,” Opt. Lett. 8(12), 647–649 (1983). [CrossRef] [PubMed]
  2. Y. Morishita, E. Matsuyama, K. Nouchi, H. Noro, and K. Tanaka, “Co(2+)-doped flatband optical fiber attenuator,” Opt. Lett. 26(11), 783–785 (2001). [CrossRef]
  3. Generic Requirements for Fiber Optic Attenuators, Generic Requirements GR-910-CORE, Issue 2, December 1998 (Telecordia Technologies, Piscataway, N.J., 1998), http://www.telcordia.com .
  4. W. Johnstone, “Side-polished evanescently coupled optical fiber overlay devices: a review,” in Guided wave optical components and devices: basics, technology and applications, B. P. Pal, ed., (Academic Press, Elsevier, Burlington, 2006), Chap. 14 pp. 225–232.
  5. W. Ecke, W. Haubenreisser, H. Lehmann, S. Schroeter, G. Schwotzer, and R. Willsch, “Phase-sensitive fiber -optic monoptodes for chemical sensing,” Sens. Actuators B Chem. 11(1-3), 475–479 (1993). [CrossRef]
  6. A. Gastón, F. Pérez, and J. Sevilla, “Optical fiber relative-humidity sensor with polyvinyl alcohol film,” Appl. Opt. 43(21), 4127–4132 (2004). [CrossRef] [PubMed]
  7. A. O. Dikovska, P. A. Atanasov, T. R. Stoyanchov, A. T. Andreev, E. I. Karakoleva, and B. S. Zafirova, “Pulsed laser deposited ZnO film on side-polished fiber as a gas sensing element,” Appl. Opt. 46(13), 2481–2485 (2007). [CrossRef] [PubMed]
  8. Y. Lin, Y. Tsao, W. Tsai, T. Hung, K. Chen, and S. Liao, “The enhancement method of optical fiber biosensor based on surface plasmon resonance with cold plasma modification,” Sens. Actuators B Chem. 133(2), 370–373 (2008). [CrossRef]
  9. C. Tien, H. Chen, W. Liu, S. Jyu, S. Lin, and Y. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516(16), 5360–5363 (2008). [CrossRef]
  10. C. Chu and Y. Lo, “A plastic optical fiber sensor for the dual sensing of temperature and oxygen,” IEEE Photon. Technol. Lett. 20(1), 63–65 (2008). [CrossRef]
  11. H. S. Jang, K. N. Park, J. P. Kim, S. J. Sim, O. J. Kwon, Y. G. Han, and K. S. Lee, “Sensitive DNA biosensor based on a long-period grating formed on the side-polished fiber surface,” Opt. Express 17(5), 3855–3860 (2009). [CrossRef] [PubMed]
  12. A. Andreev, B. Pantchev, P. Danesh, B. Zafirova, and E. Karakoleva, “a-Si:H film on side-polished fiber as optical polarizer and narrow-band filter,” Thin Solid Films 330(2), 150–156 (1998). [CrossRef]
  13. N. K. Chen, S. Chi, and S. M. Tseng, “Wideband tunable fiber short-pass filter based on side-polished fiber with dispersive polymer overlay,” Opt. Lett. 29(19), 2219–2221 (2004). [CrossRef] [PubMed]
  14. R. Lausten, P. Rochon, M. Ivanov, P. Cheben, S. Janz, P. Desjardins, J. Ripmeester, T. Siebert, and A. Stolow, “Optically reconfigurable azobenzene polymer-based fiber Bragg filter,” Appl. Opt. 44(33), 7039–7042 (2005). [CrossRef] [PubMed]
  15. K. T. Kim, S. Hwangbo, J. P. Mah, and K. R. Sohn, “Widely tunable filter based on coupling between a side-polished fiber and a tapered planar waveguide,” IEEE Photon. Technol. Lett. 17(1), 142–144 (2005). [CrossRef]
  16. R. K. Varshney, A. Singh, K. Pande, and B. P. Pal, “Side-polished fiber based gain-flattening filter for erbium doped fiber amplifiers,” Opt. Commun. 271(2), 441–444 (2007). [CrossRef]
  17. R. K. Varshney, B. Nagaraju, A. Singh, B. P. Pal, and A. K. Kar, “Design and realization of an all-fiber broadband tunable gain equalization filter for DWDM signals,” Opt. Express 15(21), 13519–13530 (2007). [CrossRef] [PubMed]
  18. K. R. Sohn and K. Taek, “Multiwavelength all-fiber ring laser using side-polished fiber comb filter and mechanically formed long-period fiber gratings,” IEEE Photon. Technol. Lett. 17(2), 309–311 (2005). [CrossRef]
  19. P. St. J. Russell and R. Ulrich, “Grating-fiber coupler as a high-resolution spectrometer,” Opt. Lett. 10(6), 291–293 (1985). [CrossRef] [PubMed]
  20. K. T. Kim, H. K. Kim, S. Hwangbo, S. Choi, B. Lee, and K. Oh, “Characterization of evanescent wave coupling in side-polished hollow optical fiber and its application as a broadband coupler,” Opt. Commun. 245(1-6), 145–151 (2005). [CrossRef]
  21. N. K. Chen, C. L. Lee, and S. Chi, “Wideband tunable wavelength-selective coupling in asymmetric side-polished fiber coupler with dispersive interlayer,” Opt. Express 15(26), 17747–17753 (2007). [CrossRef] [PubMed]
  22. K. T. Kim, H. W. Kwon, J. W. Song, S. Lee, W. G. Jung, and S. W. Kang, “Polarizing properties of optical coupler composed of single mode side-polished fiber and multimode metal-clad planar waveguide,” Opt. Commun. 180(1-3), 37–42 (2000). [CrossRef]
  23. S. G. Lee, J. P. Sokoloff, B. P. McGinnis, and H. Sasabe, “Fabrication of a side-polished fiber polarizer with a biref ringent polymer overlay,” Opt. Lett. 22(9), 606–608 (1997). [CrossRef] [PubMed]
  24. D. G. Moodie and W. Johnstone, “Wavelength tunability of components based on the evanescent coupling from a side-polished fiber to a high-index-overlay waveguide,” Opt. Lett. 18(12), 1025–1027 (1993). [CrossRef] [PubMed]
  25. G. Raizada and B. P. Pal, “Refractometers and tunable components based on side-polished fibers with multimode overlay waveguides: role of the superstrate,” Opt. Lett. 21(6), 399–401 (1996). [CrossRef] [PubMed]
  26. S. G. Lee, J. P. Sokoloff, B. P. McGinnis, and H. Sasabe, “Polymer waveguide overlays for side-polished fiber devices,” Appl. Opt. 37(3), 453–462 (1998). [CrossRef]
  27. I. C. Khoo, Liquid Crystals (Wiley, New York, 1994).
  28. G. Abbate and J. M. Otón, “Liquid crystal based photonic devices: LC Photonet,” Adv. Mater. 12(6), 459–467 (2000). [CrossRef]
  29. V. K. S. Hsiao, Y. B. Zheng, B. K. Juluri, and T. J. Huang, “Light-Driven plasmonic switches based on Au nanodisk arrays and photoresponsive liquid crystals,” Adv. Mater. 20(18), 3528–3532 (2008). [CrossRef]
  30. Z. Chen, and L. Liu, “Wavelength tuning of fiber Bragg grating based on fiber side polishing,” Proc. SPIE (Advanced Sensor Technologies and Applications) 7157, 71570J/1–71570J/6 (2009).
  31. J. Li, S. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97, 073501/1–073501/5 (2005).
  32. T. Ikeda, “Photomodulation of liquid crystal orientations for photonic applications,” J. Mater. Chem. 13(9), 2037–2057 (2003). [CrossRef]
  33. S. K. Prasad, S. Krishna, G. G. Nair, K. L. Sandhya, and D. S. S. Rao, “Photoinduced phase transitions in liquid crystalline systems,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 436(1), 1037–1059 (2005).
  34. W. Quevedo, M. Petri, G. Busse, and S. Techert, “On the mechanism of photoinduced phase transitions in ternary liquid crystal systems near thermal equilibrium,” J. Chem. Phys. 129, 024502/1–024502/10 (2008).
  35. J. Garcia-Amorós, A. Szymczyk, and D. Velasco, “Nematic-to-isotropic photo-induced phase transition in azobenzene-doped low-molar liquid crystals,” Phys. Chem. Chem. Phys. 11(21), 4244–4250 (2009). [CrossRef] [PubMed]
  36. S. Kurihara, S. Nomiyama, and T. Nonaka, “Photochemical control of the macrostructure of cholesteric liquid crystals by Means of photoisomerization of chiral azobenzene molecules,” Chem. Mater. 13(6), 1992–1997 (2001). [CrossRef]
  37. Z. Alam, T. Yoshioka, T. Ogata, T. Nonaka, and S. Kurihara, “Influence of helical twisting power on the photoswitching behavior of chiral azobenzene compounds: applications to high-performance switching devices,” Chem. Eur. J. 13(9), 2641–2647 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited