OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 22 — Oct. 26, 2009
  • pp: 19996–20011

The forces from coupled surface plasmon polaritons in planar waveguides

David Woolf, Marko Loncar, and Federico Capasso  »View Author Affiliations

Optics Express, Vol. 17, Issue 22, pp. 19996-20011 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (772 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analytically investigate the forces due to Surface Plasmon Polariton (SPP) modes between finite and infinitely thick metal slabs separated by an air gap. Using the Drude model and experimentally determined values of the dielectric functions of gold and silver, we study how frequency dispersion and loss in the metals affects the behavior of the SPP modes and the forces generated by them. We calculate the force using the Maxwell Stress Tensor for both the attractive and repulsive modes.

© 2009 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.2030) Physical optics : Dispersion
(260.3910) Physical optics : Metal optics
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optics at Surfaces

Original Manuscript: September 21, 2009
Manuscript Accepted: October 8, 2009
Published: October 19, 2009

David Woolf, Marko Loncar, and Federico Capasso, "The forces from coupled surface plasmon polaritons in planar waveguides," Opt. Express 17, 19996-20011 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Lebedew, "Testings on the compressive force of light," Ann. Phys. 6, 433-458 (1901). [CrossRef]
  2. E. F. Nichols, and G. F. Hull, "The pressure due to radiation (Second paper)," Phys. Rev. 17, 26-50 (1903).
  3. R. L. Garwin, "Solar Sailing - A practical method of propulsion within the solar system," Jet Propulsion 28, 188-190 (1958).
  4. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986). [CrossRef] [PubMed]
  5. D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003). [CrossRef] [PubMed]
  6. M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, "Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces," Nature Photonics 1, 416-422 (2007). [CrossRef]
  7. M. Hossein-Zadeh, and K. J. Vahala, "Observation of optical spring effect in a microtoroidal optomechanical resonator," Opt. Lett. 32, 1611-1613 (2007). [CrossRef] [PubMed]
  8. V. G. Veselago, "Electrodynamics of substances with simultaneously negative values of sigma and mu," Soviet Physics Uspekhi-Ussr 10, 509-514 (1968). [CrossRef]
  9. M. Scalora, G. D’Aguanno, N. Mattiucci, M. J. Bloemer, M. Centini, C. Sibilia, and J. W. Haus, "Radiation pressure of light pulses and conservation of linear momentum in dispersive media," Phys. Rev. E 73, 056604 (2006). [CrossRef]
  10. A. D. Boardman, and K. Marinov, "Electromagnetic energy in a dispersive metamaterial," Phys. Rev. B 73, 165110 (2006). [CrossRef]
  11. M. I. Antonoyiannakis, and J. B. Pendry, "Electromagnetic forces in photonic crystals," Phys. Rev. B 60, 2363-2374 (1999). [CrossRef]
  12. M. Mansuripur, "Radiation pressure and the linear momentum of light in dispersive dielectric media" Opt. Express 13, 2245-2250 (2005), http://www.opticsinfobase.org/abstract.cfm?URI= oe-13-6-2245. [CrossRef] [PubMed]
  13. R. Loudon, S.M. Barnett, and C. Baxter, "Radiation Pressure and momentum transfer in dielectrics: the photon drag effect," Phys. Rev. A 71, 063808 (2005). [CrossRef]
  14. M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, "Evanescent-wave bonding between optical waveguides," Opt. Lett. 30, 3042-3044 (2005). [CrossRef] [PubMed]
  15. F. Riboli, A. Recati, M. Antezza, and I. Carusotto, "Radiation induced force between two planar waveguides," Eur. Phys. J. D 46, 157-164 (2008). [CrossRef]
  16. M. L. Povinelli, S. G. Johnson, M. Loncar, M. Ibanescu, E. J. Smythe, F. Capasso, and J. D. Joannopoulos, "High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery-mode resonators," Opt. Express 13, 8286-8295 (2005), http://www.opticsinfobase.org/abstract.cfm? URI=oe-13-20-8286. [CrossRef] [PubMed]
  17. M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, "Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide," Appl. Phys. Lett. 85, 1466-1468 (2004). [CrossRef]
  18. B. M. Han, S. Chang, and S. S. Lee, "Enhancement of the evanescent field pressure on a dielectric film by coupling with surface plasmons," J. Korean Phys. Soc. 35, 180-185 (1999).
  19. F. Liu, Y. Rao, Y. D. Huang,W. Zhang, and J. D. Peng, "Coupling between long range surface plasmon polariton mode and dielectric waveguide mode," Appl. Phys. Lett. 90, 141101 (2007). [CrossRef]
  20. H. S. Won, K. C. Kim, S. H. Song, C. H. Oh, P. S. Kim, S. Park, and S. I. Kim, "Vertical coupling of long-range surface plasmon polaritons," Appl. Phys. Lett. 88, 011110 (2006). [CrossRef]
  21. J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Act. B 54, 3-15 (1999). [CrossRef]
  22. D. Sarid, "Long-range surface-plasma waves on very thin metal-films," Phys. Rev. Lett. 47, 1927-1930 (1981). [CrossRef]
  23. P. Berini, R. Charbonneau, and N. Lahoud, "Long-range surface plasmons on ultrathin membranes," Nano Lett. 7, 1376-1380 (2007). [CrossRef] [PubMed]
  24. T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, "Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths," Appl. Phys. Lett. 82, 668-670 (2003). [CrossRef]
  25. P. Nordlander, and E. Prodan, "Plasmon hybridization in nanoparticles near metallic surfaces," Nano Lett. 4, 2209-2213 (2004). [CrossRef]
  26. E. Prodan, and P. Nordlander,"Plasmon hybridization in spherical nanoparticles," J. Chem. Phys. 120, 5444-5454 (2004). [CrossRef] [PubMed]
  27. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
  28. H. T. Miyazaki, and Y. Kurokawa, "Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity," Phys. Rev. Lett. 96, 097401 (2006). [CrossRef] [PubMed]
  29. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B 73, 035407 (2006). [CrossRef]
  30. Y. Kurokawa, and H. T. Miyazaki, "Metal-insulator-metal plasmon nanocavities: Analysis of optical properties," Phys. Rev. B 75, 035411 (2007). [CrossRef]
  31. H. T. Miyazaki, and Y. Kurokawa, "Controlled plasmon resonance in closed metal/insulator/metal nanocavities," Appl. Phys. Lett. 89, 211126 (2006). [CrossRef]
  32. C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, "Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates," Nano Lett. 5, 1569-1574 (2005). [CrossRef] [PubMed]
  33. E. Cubukcu, N. F. Yu, E. J. Smythe, L. Diehl, K. B. Crozier, and F. Capasso, "Plasmonic Laser Antennas and Related Devices," IEEE J. Sel. Top. Quantum Electron. 14, 1448-1461 (2008). [CrossRef]
  34. M. Nieto-Vesperinas, P. C. Chaumet, and A. Rahmani, "Near-field photonic forces," Philosoph. Trans. Roy. Soc. A - Math. Phys. Engin. Scie. 362, 719-737 (2004). [CrossRef] [PubMed]
  35. G. Volpe, R. Quidant, G. Badenes, and D. Petrov, "Surface plasmon radiation forces," Phys. Rev. Lett. 96, 238101 (2006). [CrossRef] [PubMed]
  36. M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, "Surface plasmon optical tweezers: Tunable optical manipulation in the femtonewton range," Phys. Rev. Lett. 100, 186804 (2008). [CrossRef] [PubMed]
  37. Y. G. Song, B. M. Han, and S. Chang, "Force of surface plasmon-coupled evanescent fields on Mie particles," Optics Communications 198, 7-19 (2001). [CrossRef]
  38. F. J. G. de Abajo, T. Brixner, andW. Pfeiffer, "Nanoscale force manipulation in the vicinity of a metal nanostructure," J. Phys. B 40, S249-S258 (2007). [CrossRef]
  39. J. R. Arias-Gonzalez, and M. Nieto-Vesperinas, "Optical forces on small particles: attractive and repulsive nature and plasmon-resonance conditions," J. Opt. Soc. Am. A - Opt. Image Scie. Vision 20, 1201-1209 (2003). [CrossRef]
  40. Z. P. Li, M. Kall, and H. Xu, "Optical forces on interacting plasmonic nanoparticles in a focused Gaussian beam," Phys. Rev. B 77, 085412 (2008). [CrossRef]
  41. R. Quidant, S. Zelenina, and M. Nieto-Vesperinas, "Optical manipulation of plasmonic nanoparticles," Appl. Phys. A-Materials Science & Processing 89, 233-239 (2007). [CrossRef]
  42. V. Yannopapas, "Optical Forces near a plasmonic nanostructure," Phys. Rev. B 78,045412 (2008) [CrossRef]
  43. J. Ng, R. Tang and C.T. Chan, "Electrodynamic study of plasmonic bonding and antibonding forces in a bisphere," Phys. Rev. B 77,195407 (2008) [CrossRef]
  44. E. D. Palik, ed. Handbook of Optical Constants of Solids (Academic Press, San Diego, 1997).
  45. I. Pirozhenko, A. Lambrecht, and V. B. Svetovoy, "Sample dependence of the Casimir force," New J. Phys. 8, 8238 (2006). [CrossRef]
  46. S. M. Barnett, and R. Loudon, "On the electromagnetic force on a dielectric medium," Journal of Physics BAtomic Molecular and Optical Physics 39, S671-S684 (2006). [CrossRef]
  47. M. Mansuripur, and A. R. Zakharian, "Maxwell’s macroscopic equations, the energy-momentum postulates, and the Lorentz law of force," Phys. Rev. E 79, 10 (2009). [CrossRef]
  48. L. P. Pitaevskii, "Electric forces in a transparent dispersive medium" Soviet Physics Jetp-Ussr 12, 1008-1013 (1961).
  49. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynaimcs of Continuous Media (Butterworth Heinemann, Amsterdam, 1984).
  50. J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, Hoboken, 1999).
  51. V. L. Ginzburg, Applications of Electrodynamics in Theoretical Physics and Astrophysics (Gordon and Breach Science Publishers, New York, 1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited