OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 22 — Oct. 26, 2009
  • pp: 20078–20098

Modeling dispersive coupling and losses of localized optical and mechanical modes in optomechanical crystals

Matt Eichenfield, Jasper Chan, Amir H. Safavi-Naeini, Kerry J. Vahala, and Oskar Painter  »View Author Affiliations


Optics Express, Vol. 17, Issue 22, pp. 20078-20098 (2009)
http://dx.doi.org/10.1364/OE.17.020078


View Full Text Article

Enhanced HTML    Acrobat PDF (2282 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Periodically structured materials can sustain both optical and mechanical excitations which are tailored by the geometry. Here we analyze the properties of dispersively coupled planar photonic and phononic crystals: optomechanical crystals. In particular, the properties of co-resonant optical and mechanical cavities in quasi-1D (patterned nanobeam) and quasi-2D (patterned membrane) geometries are studied. It is shown that the mechanical Q and optomechanical coupling in these structures can vary by many orders of magnitude with modest changes in geometry. An intuitive picture is developed based upon a perturbation theory for shifting material boundaries that allows the optomechanical properties to be designed and optimized. Several designs are presented with mechanical frequency ~1–10 GHz, optical Q-factor Qo >107, motional masses meff≈100 femtograms, optomechanical coupling length LOM<5 µm, and clampinig losses that are exponentially suppressed with increasing number of phononic crystal periods (radiation-limited mechanical Q-factor Qm >107 for total device size less than 30 µm).

© 2009 Optical Society of America

OCIS Codes
(230.5750) Optical devices : Resonators
(230.4685) Optical devices : Optical microelectromechanical devices
(350.4855) Other areas of optics : Optical tweezers or optical manipulation
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: August 3, 2009
Revised Manuscript: September 14, 2009
Manuscript Accepted: September 22, 2009
Published: October 20, 2009

Citation
Matt Eichenfield, Jasper Chan, Amir H. Safavi-Naeini, Kerry J. Vahala, and Oskar Painter, "Modeling dispersive coupling and losses of localized optical and mechanical modes in optomechanical crystals," Opt. Express 17, 20078-20098 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-22-20078


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Maldovan and E. L. Thomas, "Simultaneous localization of photons and phonons in two-dimensional periodic structures," Appl. Phys. Lett. 88, 251907 (2006). [CrossRef]
  2. M. Eichenfield, J. Chan, R. Camacho, K. J. Vahala, and O. Painter, "Optomechanical Crystals," Nature, DOI:10.1038/nature08524 (2009). [PubMed]
  3. T. J. Kippenberg and K. J. Vahala, "Cavity Optomechanics," Opt. Express 15(25), 172-205 (2007).
  4. T. J. Kippenberg and K. J. Vahala, "Cavity Optomechanics: Back-Action at the Mesoscale," Science 321(5893), 1172-1176 (2008). [CrossRef]
  5. I. Favero and K. Karrai, "Optomechanics of deformable optical cavities," Nature Physics 3(4), 201-205 (2009).
  6. M. Trigo, A. Bruchhausen, A. Fainstein, B. Jusserand, and V. Thierry-Mieg, "Confinement of Acoustical Vibrations in a Semiconductor Planar Phonon Cavity," Phys. Rev. Lett. 89, 227,402 (2002).
  7. M. S. Kang, A. Nazarkin, A. Brenn, and P. S. J. Russell, "Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators," Nat Phys 5(4), 276-280 (2009). [CrossRef]
  8. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, "Photonic-Bandgap microcavities in optical waveguides," Nature 390, 143-145 (1997). [CrossRef]
  9. O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1824 (1999). [CrossRef] [PubMed]
  10. J. Chan, M. Eichenfield, R. Camacho, and O. Painter, "Optical and mechanical design of a "zipper" photonic crystal optomechanical cavity," Opt. Express 17(5), 3802-3817 (2009). [CrossRef]
  11. M. Pinard and Y. Hadjar and A. Heidmann, "Effective mass in quantum effects of radiation pressure," Eur. Phys. J. D 7, 107-116 (1999).
  12. T. Carmon and K. J. Vahala, "Optomechanical Modal Spectroscopy of Optoexcited Vibrations of a Micron-Scale on-Chip Sphere at Greater than 1 GHz," Phys. Rev. Lett. 98, 123901 (2007). [CrossRef] [PubMed]
  13. M. Tomes and T. Carmon, "Photonic Micro-Electromechanical Systems Vibrating at X-band (11-GHz) Rates," Phys. Rev. Lett. 102, 113601 (2009). [CrossRef]
  14. O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard, A. Heidmann, J. M. Mackowski, C. Michel, L. Pinard, O. Francais, and L. Rousseau, "High-Sensitivity Optical Monitoring of a Micromechanical Resonator with a Quantum-Limited Optomechanical Sensor," Phys. Rev. Lett. 97, 133601 (2006). [CrossRef] [PubMed]
  15. I. Tittonen, G. Breitenbach, T. Kalkbrenner, T. M¨uller, R. Conradt, S. Schiller, E. Steinsland, N. Blanc, and N. F. de Rooij, "Interferometric measurements of the position of a macroscopic body: Towards observation of quantum limits," Phys. Rev. A 59(2), 1038-1044 (1999). [CrossRef]
  16. V. B. Braginski?, F. Y. Khalili, and K. S. Thorne, Quantum measurement (Cambridge University Press, Cambridge, 1992). [CrossRef]
  17. V. Braginsky and S. P. Vyachanin, "Low quantum noise tranquilizer for Fabry Perot interferometer," Phys. Lett. A 293(5-6), 228-234 (2002). [CrossRef]
  18. S. Gigan, H. R. Bohm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bauerle, M. Aspelmeyer, and A. Zeilinger, "Self-cooling of a micromirror by radiation pressure," Nature 444, 67-70 (2006). [CrossRef] [PubMed]
  19. O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, "Radiation-pressure cooling and optomechanical instability of a micromirror," Nature 444, 71-73 (2006). [CrossRef] [PubMed]
  20. D. Kleckner and D. Bouwmeester, "Sub-kelvin optical cooling of a micromechanical resonator," Nature 444, 75-78 (2006). [CrossRef] [PubMed]
  21. A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, "Radiation Pressure Cooling of a Micromechanical Oscillator Using Dynamical Backaction," Phys. Rev. Lett. 97, 243905 (2006). [CrossRef]
  22. V. B. Braginsky, S. E. Strigin, and S. P. Vyatchanin, "Parametric oscillatory instability in Fabry-Perot interferometer," Phys. Lett. A 287(5-6), 331 - 338 (2001). [CrossRef]
  23. T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, "Analysis of Radiation-Pressure Induced Mechanical Oscillation of an Optical Microcavity," Phys. Rev. Lett. 95(3), 033901 (2005). [CrossRef]
  24. K. J. Vahala, "Back-action limit of linewidth in an optomechanical oscillator," Phys. Rev. A (Atomic, Molecular, and Optical Physics) 78, 023832 (2008). [CrossRef]
  25. Y.-C. Wen, L.-C. Chou, H.-H. Lin, V. Gusev, K.-H. Lin, and C.-K. Sun, "Efficient generation of coherent acoustic phonons in (111) InGaAs/GaAs multiple quantum wells through piezoelectric effects," Appl. Phys. Lett. 90, 172102 (2007). [CrossRef]
  26. N. D. Lanzillotti-Kimura, A. Fainstein, A. Huynh, B. Perrin, B. Jusserand, A. Miard, and A. Lemaitre, "Coherent Generation of Acoustic Phonons in an Optical Microcavity," Phys. Rev. Lett. 99, 217405 (2007). [CrossRef]
  27. R. H. O. III and I. El-Kady, "Microfabricated phononic crystal devices and applications," Measurement Scie. Technol. 20, 012,002 (2009).
  28. R. H. O. III, I. F. El-Kady, M. F. Su, M. R. Tuck, and J. G. Fleming, "Microfabricated VHF acoustic crystals and waveguides," Sensors Act. A: Physical 145-146, 87 - 93 (2008).
  29. J. V. Sanchez-Perez, D. Caballero, R. Martinez-Sala, C. Rubio, J. Sanchez-Dehesa, F. Meseguer, J. Llinares, and F. Galvez, "Sound Attenuation by a Two-Dimensional Array of Rigid Cylinders," Phys. Rev. Lett. 80(24), 5325-5328 (1998). [CrossRef]
  30. W. M. Robertson and J . F. R . III, "Measurement of acoustic stop bands in two-dimensional periodic scattering arrays," J. Acoustical Soc. Am. 104(2), 694-699 (1998). [CrossRef]
  31. A. Khelif, B. Djafari-Rouhani, J. O. Vasseur, and P. A. Deymier, "Transmission and dispersion relations of perfect and defect-containing waveguide structures in phononic band gap materials," Phys. Rev. B 68, 024,302 (2003).
  32. A. Dorsel, J. McCullen, P. Meystre, E. Vignes, and H. Walther, "Optical Bistability and Mirror Confinement Induced by Radiation Pressure," Phys. Rev. Lett. 51, 1550-1553 (1983). [CrossRef]
  33. P. Meystre, E. M. Wright, J. D. McCullen, and E. Vignes, "Theory of radiation-pressure-driven interferometers," J. Opt. Soc. Am. B 2(11), 1830-1840 (1985). [CrossRef]
  34. S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, "Perturbation theory for Maxwell’s equations with shifting material boundaries," Phys. Rev. E 65(6), 066611 (2002). [CrossRef]
  35. B.-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Materials 4, 207-210 (2005). [CrossRef]
  36. MIT Photonic Bands (MPB) is a free software package for the solution of the electromagnetic eigenmodes of periodic structures. MPB has been developed at MIT, http://ab-initio.mit.edu/wiki/index.php/MPB.
  37. COMSOL is a multiphysics software package for performing finite-element-method (FEM) simulations. See COMSOL AB, http://www.comsol.com/We use the COMSOL multiphysics software package to perform both optical and mechanical numerical simulations of the optomechanical crystal systems.
  38. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, "A picogram- and nanometre-scale photoniccrystal optomechanical cavity," Nature 459(7246), 550-555 (2009). [CrossRef]
  39. K. Srinivasan and O. Painter, "Momentum space design of high-Q photonic crystal optical cavities," Opt. Express 10(15), 670-684 (2002).
  40. B. A. Auld, Acoustic Fields in Waves and Solids (Robert E. Krieger Publishing Company, 1973).
  41. C. Sauvan, P. Lalanne, and J. P. Hugonin, "Slow-wave effect and mode-profile matching in photonic crystal microcavities," Phys. Rev. B 71, 165118 (2005). [CrossRef]
  42. P. Velha, J. C. Rodier, P. Lalanne, J. D. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, "Ultracompact silicon-on-insulator ridge-waveguide mirrors with high reflectance," Appl. Phys. Lett. 89, 171121 (2006). [CrossRef]
  43. A. R. Md Zain, N. P. Johnson, M. Sorel, and R. M. De La Rue, "Ultra high quality factor one-dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI)," Opt. Express 16(16), 084-089 (2008).
  44. M. W. McCutcheon and M. Loncar, "Design of a silicon nitride photonic crystal nanocavity with a Quality factor of one million for coupling to a diamond nanocrystal," Opt. Express 16(23), 136-145 (2008).
  45. M. Notomi, E. Kuramochi, and H. Taniyama, "Ultrahigh-Q Nanocavity with 1D Photonic Gap," Opt. Express 16(15), 905-102 (2008).
  46. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, "Coupled photonic crystal nanobeam cavities," Appl. Phys. Lett. 95(3), 031,102-3 (2009).
  47. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, "High quality factor photonic crystal nanobeam cavities," Appl. Phys. Lett. 94(12), 121106 (2009). [CrossRef]
  48. O. Painter, K. Srinivasan, and P. E. Barclay, "A Wannier-like equation for photon states of locally perturbed photonic crystals," Phys. Rev. B 68, 035,214 (2003).
  49. T. Gorishnyy, J.-H. Jang, C. Koh, and E. L. Thomas, "Direct observation of a hypersonic band gap in twodimensional single crystalline phononic structures," Appl. Phys. Lett. 91(12), 121915 (2007). [CrossRef]
  50. M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, "Acoustic band structure of periodic elastic composites," Phys. Rev. Lett. 71(13), 2022-2025 (1993). [CrossRef]
  51. F. R. Montero de Espinosa, E. Jimenez, and M. Torres, "Ultrasonic Band Gap in a Periodic Two-Dimensional Composite," Phys. Rev. Lett. 80(6), 1208-1211 (1998). [CrossRef]
  52. A. Cleland, Foundations of Nanomechanics (Springer-Verlag, 2003).
  53. H. Kolsky, Stress waves in solids (Dover Publications, Inc., 1963).
  54. B. H. Houston, D. M. Photiadis, M. H. Marcus, J. A. Bucaro, X. Liu, and J. F. Vignola, "Thermoelastic loss in microscale oscillators," Appl. Phys. Lett. 80(7), 1300-1302 (2002). [CrossRef]
  55. Y. Yi, "Geometric effects on thermoelastic damping in MEMS resonators," J. Sound Vibration 309(3-5), 588 -599 (2008). [CrossRef]
  56. A. Duwel, J. Gorman, M. Weinstein, J. Borenstein, and P. Ward, "Experimental study of thermoelastic damping in MEMS gyros," Sensors Actuator. A 103(1-2), 70 - 75 (2003). [CrossRef]
  57. R. Lifshitz and M. L. Roukes, "Thermoelastic damping in micro- and nanomechanical systems," Phys. Rev. B 61(8) (2000).
  58. L. Landau and G. Rumer, "On the absorption of sound in solids," Phys. Zeit. Sowjet.  11(18), (1937).
  59. W. Fon, K. C. Schwab, J. M. Worlock, and M. L. Roukes, "Phonon scattering mechanisms in suspended nanostructures from 4 to 40 K," Phys. Rev. B 66(4) (2002).
  60. T. A. Read, "The Internal Friction of Single Metal Crystals," Phys. Rev. 58(4) (1940).
  61. D. Bindel and S. Govindjee, "Elastic PMLs for resonator anchor loss simulation," Tech report UCB/SEMM-2005/01. Submitted to IJNME 64(6), 789-818 (2005). [CrossRef]
  62. M. Maldovan and E. Thomas, "Simultaneous complete elastic and electromagnetic band gaps in periodic structures," Appl. Phys. B 83(4), 595-600 (2006). [CrossRef]
  63. S. Mohammadi, A. A. Eftekhar, and A. Adibi, "Large Simultaneous Band Gaps for Photonic and Phononic Crystal Slabs," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, p. CFY1 (Optical Society of America, 2008). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited