OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 22 — Oct. 26, 2009
  • pp: 20134–20139

Surface plasmon reflector based on serial stub structure

Jianlong Liu, Guangyu Fang, Haifa Zhao, Yan Zhang, and Shutian Liu  »View Author Affiliations


Optics Express, Vol. 17, Issue 22, pp. 20134-20139 (2009)
http://dx.doi.org/10.1364/OE.17.020134


View Full Text Article

Enhanced HTML    Acrobat PDF (169 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Plasmonic reflectors based on serial stub structure are studied in this paper. A general theory of periodic stub structure using transmission line model is developed. The transmission characteristics, e.g., periodicity and symmetry of the spectra, are closely related to the ratio of structure period to stub length. Investigation reveals that the transmission valleys of the spectra could be divided into two categories, which is quite different from conventional Bragg reflectors. Finite-Difference Time-Domain (FDTD) method is used in numerical analysis in this paper.

© 2009 Optical Society of America

OCIS Codes
(230.7400) Optical devices : Waveguides, slab
(240.6680) Optics at surfaces : Surface plasmons
(250.5300) Optoelectronics : Photonic integrated circuits
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Optics at Surfaces

History
Original Manuscript: September 18, 2009
Revised Manuscript: October 17, 2009
Manuscript Accepted: October 18, 2009
Published: October 20, 2009

Citation
Jianlong Liu, Guangyu Fang, Haifa Zhao, Yan Zhang, and Shutian Liu, "Surface plasmon reflector based on serial stub structure," Opt. Express 17, 20134-20139 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-22-20134


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424824-830 (2003). [CrossRef] [PubMed]
  2. E. Ozbay, "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science 311189-193 (2006). [CrossRef] [PubMed]
  3. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phys. Lett. 87,061106 (2005). [CrossRef]
  4. D. F. P. Pile and D. K. Gramotnev, "Channel plasmon-polariton in a triangular groove on a metal surface," Opt. Lett. 29, 1069-1071 (2004). [CrossRef] [PubMed]
  5. J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B 73,035407 (2006). [CrossRef]
  6. B. Wang and G.P. Wang, "Plasmon Bragg reflectors and nanocavities on flat metallic surfaces," Appl. Phys. Lett. 87, 013107 (2005). [CrossRef]
  7. A. Hossieni and Y. Massoud, "A low-loss metal-insulator-metal plasmonic bragg reflector," Opt. Express 14, 11318-11323 (2006). [CrossRef] [PubMed]
  8. Z. Han, E. Forsberg, and S. He, "Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides," IEEE Photon. Technol. Lett. 19, 91-93 (2007). [CrossRef]
  9. J. Liu, L. Wang, M. He, W. Huang, D. Wang, B. Zou, and S. Wen, "A wide bandgap plasmonic Bragg reflector," Opt. Express 16, 4888-4894 (2008). [CrossRef] [PubMed]
  10. Q. Zhang, X. Huang, X. Lin, J. Tao, and X. Jin, "A subwavelength coupler-type MIM optical filter," Opt. Express 17, 7549-7555 (2009). [CrossRef]
  11. S. Xiao, L. Liu, and M. Qiu, "Resonator channel drop filters in a plasmon-polaritons metal," Opt. Express 14, 2932-2937 (2006). [CrossRef] [PubMed]
  12. Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui and M. Nakagaki, "Characteristics of gap plasmon waveguide with stub structures," Opt. Express 16, 16314-16325 (2008). [CrossRef] [PubMed]
  13. X. Lin and X. Huang, "Numerical modeling of a teeth-shaped nanoplasmonic waveguide filter," J. Opt. Soc. Am. B 26, 1263-1268 (2009). [CrossRef]
  14. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (MA: Artech House, Boston, 2000).
  15. G. Veronis and S. Fan, "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides," Appl. Phys. Lett. 87, 131102 (2005). [CrossRef]
  16. S. E. Kocabas, G. Veronis, D. A. B. Miller, S. Fan, "Transmission Line and Equivalent Circuit Models for Plasmonic Waveguide Components," IEEE J. Sel. Top. Quantum Electron. 14, 1462-1472 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited