OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 22 — Oct. 26, 2009
  • pp: 20203–20210

Plasmonic data storage medium with metallic nano-aperture array embedded in dielectric material

Sinjeung Park and Jae Won Hahn  »View Author Affiliations


Optics Express, Vol. 17, Issue 22, pp. 20203-20210 (2009)
http://dx.doi.org/10.1364/OE.17.020203


View Full Text Article

Enhanced HTML    Acrobat PDF (222 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a plasmonic data storage medium with a high-transmission metal aperture array embedded in a dielectric material. Bowtie apertures, having an outline of 80 nm and a ridge gap of 30 nm, are arranged in a two dimensional array with a bit pitch of 100 nm and a track pitch of 280 nm. Using the finite differential time domain (FDTD) method, we calculate the exposure power needed to record optical data, the contrast for readability of recorded data, and cross talk between the main track and adjacent tracks. Compared to a conventional blu-ray disc, the exposure power needed to record optical data in the proposed plasmonic data storage medium is less than a quarter of the conventional threshold power, and the density of the data storage is about 1.8 times larger.

© 2009 OSA

OCIS Codes
(210.0210) Optical data storage : Optical data storage
(210.4590) Optical data storage : Optical disks
(240.6680) Optics at surfaces : Surface plasmons
(210.4245) Optical data storage : Near-field optical recording
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optical Data Storage

History
Original Manuscript: August 24, 2009
Revised Manuscript: September 30, 2009
Manuscript Accepted: October 12, 2009
Published: October 21, 2009

Citation
Sinjeung Park and Jae Won Hahn, "Plasmonic data storage medium
with metallic nano-aperture array embedded
in dielectric material," Opt. Express 17, 20203-20210 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-22-20203


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. M. Mansfield, W. R. Studenmund, G. S. Kino, and K. Osato, “High-numerical-aperture lens system for an optical storage head,” Opt. Lett. 18(4), 305–307 (1993). [CrossRef] [PubMed]
  2. B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994). [CrossRef]
  3. X. Shi and L. Hesselink, “Mechanisms for Enhancing Power Throughput from Planar Nano-Apertures for Near-Field Optical Data Storage,” Jpn. J. Appl. Phys. 41(Part 1, No. 3B), 1632–1635 (2002). [CrossRef]
  4. K. Sendur and W. Challener, “Near-field radiation of bow-tie antennas and apertures at optical frequencies,” J. Microsc. 210(3), 279–283 (2003). [CrossRef] [PubMed]
  5. E. X. Jin and X. Xu, “Finitte-Difference Time-Domain Studies on Optical Transmission through Planar Nano-Apertures in a Metal Film,” Jpn. J. Appl. Phys. 43(1), 407–417 (2004). [CrossRef]
  6. K. Tanaka and M. Tanaka, “Simulation of confined and enhanced optical near-fields for an I-shaped aperture in a pyramidal structure on a thick metallic screen,” J. Appl. Phys. 95(7), 3765–3771 (2004). [CrossRef]
  7. L. Feng and P. Dawson, “Optical transmission through single subwavelength apertures using prism coupled input of laser light of annular intensity profile,” Opt. Express 15(26), 17863–17873 (2007). [CrossRef] [PubMed]
  8. S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, J. Lu, and E. Yablonovitch, “Nanoscale Fabrication of a Plasmonic Dimple Lens for Nano-focusing of Light,” Proc. SPIE 6641, 66411J (2007). [CrossRef]
  9. W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009). [CrossRef]
  10. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446(7133), 301–304 (2007). [CrossRef] [PubMed]
  11. N.-C. Park, H.-S. Yang, Y.-C. Rhim, and Y.-P. Park, “A Study on Enhancing Data Storage Capacity and Mechanical Reliability of Solid Immersion Lens-Based Near-Field Recording System,” Jpn. J. Appl. Phys. 47(8), 6646–6654 (2008). [CrossRef]
  12. J. Tominaga, T. Nakano, and N. Atoda, “An approach for recording and readout beyond the diffraction limit with an Sb thin film,” Appl. Phys. Lett. 73(15), 2078–2080 (1998). [CrossRef]
  13. J. Tominaga, and T. Nakano, Optical Near-Field Recording: Science and Technology (Springer, Berlin, 2005).
  14. H. S. Lee, B.- Cheong, T. S. Lee, K. S. Lee, W. M. Kim, J. W. Lee, S. H. Cho, and J. Youl Huh, “Thermoelectric PbTe thin film for superresolution optical data storage,” Appl. Phys. Lett. 85(14), 2782–2784 (2004). [CrossRef]
  15. L. Shi, T. C. Chong, P. K. Tan, J. Li, X. Hu, X. Miao, and Q. Wang, “Investigation on Super-Resolution Near-Field Blu-Ray-Type Phase-Change Optical Disk with Sb2Te3 Mask Layer,” Jpn. J. Appl. Phys. 44(No. 5B), 3615–3619 (2005). [CrossRef]
  16. Q. Liu, T. Fukaya, S. Cao, C. Guo, Z. Zhang, Y. Guo, J. Wei, and J. Tominaga, “Study on readout durability of super-RENS disk,” Opt. Express 16(1), 213–218 (2008). [CrossRef] [PubMed]
  17. L. Wang and X. Xu, “Numerical study of optical nanolithography using nanoscale bow-tie-shaped nano-apertures,” J. Microsc. 229(3), 483–489 (2008). [CrossRef] [PubMed]
  18. L. Wang, E. X. Jin, S. M. Uppuluri, and X. Xu, “Contact optical nanolithography using nanoscale C-shaped apertures,” Opt. Express 14(21), 9902–9908 (2006). [CrossRef] [PubMed]
  19. N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69(5), 2849–2856 (1991). [CrossRef]
  20. L. H. Ting, X. S. Miao, M. L. Lee, M. D. Sofian, and L. P. Shi, “Optical and Magneto-optical Characterization for Multi-dimensional Multi-level Optical Recording Material,” Synth. React. Inorg. Met.-Org. Chem. 38, 284–287 (2008).
  21. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55(10), 1205–1209 (1965). [CrossRef]
  22. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998). [CrossRef]
  23. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998). [CrossRef]
  24. J. C. Rhee, M. Okuda, and T. Matsushita, “Write-Erase Characteristics of Phase Change Optical Recording in Ga-Se-Te Systems,” Jpn. J. Appl. Phys. 26(Part 1, No. 1), 102–105 (1987). [CrossRef]
  25. E. T. Meinders, A. V. Mijiritskii, L. van Pieterson, and M. Wuttig, Optical Data Storage: Phase-change Media and Recording (Springer, Dordrecht, 2006).
  26. X. G. Huang, M. R. Wang, Y. Tsui, and C. Wu, “Characterization of erasable inorganic photochromic media for optical disk data storage,” J. Appl. Phys. 83(7), 3795–3799 (1998). [CrossRef]
  27. C. Peng and M. Mansuripur, “Sources of noise in erasable optical disk data storage,” Appl. Opt. 37(5), 921–928 (1998). [CrossRef]
  28. C. Peng, “Superresolution near-field readout in phase-change optical disk data storage,” Appl. Opt. 40(23), 3922–3931 (2001). [CrossRef]
  29. K. B. Chung, “Numerical analysis of readout-signal cross talk in magneto-optical land and groove recording,” Appl. Opt. 36(8), 1789–1795 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited