OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 22 — Oct. 26, 2009
  • pp: 20291–20300

Photonic crystal structures in ion-sliced lithium niobate thin films

Frederik Sulser, Gorazd Poberaj, Manuel Koechlin, and Peter Günter  »View Author Affiliations

Optics Express, Vol. 17, Issue 22, pp. 20291-20300 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1780 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the first realization of photonic crystal structures in 600-nm thick ion-sliced, single-crystalline lithium niobate thin films bonded on a lithium niobate substrate using adhesive polymer benzocyclobutene (BCB). Focused ion beam (FIB) milling is used for fast prototyping of photonic crystal structures with regular cylindrical holes. Unwanted redeposition effects leading to conically shaped holes in lithium niobate are minimized due to the soft BCB layer underneath. A high refractive index contrast of 0.65 between the lithium niobate thin film and the BCB underlayer enables strong light confinement in the vertical direction. For TE polarized light a triangular photonic crystal lattice of air holes with a diameter of 240 nm and a separation of 500 nm has a photonic bandgap in the wavelength range from 1390 to 1500 nm. Experimentally measured transmission spectra show a spectral power dip for the ΓK direction of the reciprocal lattice with an extinction ratio of up to 15 dB. This is in good agreement with numerical simulations based on the three-dimensional plane wave expansion (PWE) and the finite-difference time-domain (FDTD) method.

© 2009 Optical Society of America

OCIS Codes
(130.3730) Integrated optics : Lithium niobate
(250.5300) Optoelectronics : Photonic integrated circuits
(160.5298) Materials : Photonic crystals
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Photonic Crystals

Original Manuscript: September 8, 2009
Revised Manuscript: October 8, 2009
Manuscript Accepted: October 19, 2009
Published: October 22, 2009

Frederik Sulser, Gorazd Poberaj, Manuel Koechlin, and Peter Günter, "Photonic crystal structures in ion-sliced lithium niobate thin films," Opt. Express 17, 20291-20300 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, (Princeton University Press, 2nd Edition, 2008).
  2. Y. Akahane, T. Asano, B. S. Song, S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003). [CrossRef] [PubMed]
  3. V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004). [CrossRef] [PubMed]
  4. F. Lacour, N. Courjal, M. -P. Bernal, A. Sabac, C. Bainier, M. Spajer, "Nanostructuring lithium niobate substrates by focused ion beam milling," Opt. Mater. 27, 1421-1425 (2005). [CrossRef]
  5. M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, "Experimental and theoretical characterization of a lithium niobate photonic crystal," Appl. Phys. Lett. 87, 241101 (2005). [CrossRef]
  6. M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, R. Salut, "Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons," Appl. Phys. Lett. 89, 241110 (2006). [CrossRef]
  7. J. Amet, F. I. Baida, G. W. Burr, M.-P. Bernal, "The superprism effect in lithium niobate photonic crystals for ultra-fast, ultra-compact electro-optical switching," Photon. Nanostruct. Fundam. Appl. 6, 47-59 (2008). [CrossRef]
  8. S. Diziain, J. Amet, F. I. Baida, and M.-P. Bernal, "Optical far-field and near-field observations of the strong angular dispersion in a lithium niobate photonic crystal superprism designed for double passive and active demultiplexer applications," Appl. Phys. Lett. 93, 261103 (2008). [CrossRef]
  9. C.-H. Hou, M.-P. Bernal, C.-C. Chen, R. Salut, C. Sada, N. Argiolas, M. Bazzan, M. V. Ciampollilo, "Purcell effect observation in erbium doped lithium niobate photonic crystal structures," Opt. Commun. 281, 4151-4154 (2008). [CrossRef]
  10. G. W. Burr, S. Diziain, M.-P. Bernal, "The impact of finite-depth cylindrical and conical holes in lithium niobate photonic crystals," Opt. Express 16, 6302-6316 (2008). [CrossRef] [PubMed]
  11. S. Diziain, S. Harada, R. Salut, P. Muralt, M.-P. Bernal, "Strong improvement in the photonic stop-band edge sharpness of a lithium niobate photonic crystal slab," Appl. Phys. Lett. 95, 101103 (2009). [CrossRef]
  12. P. Rabiei and P. Gunter, "Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing," Appl. Phys. Lett. 85, 4603-4605 (2004). [CrossRef]
  13. G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, P. Gunter, "Ion-sliced lithium niobate thin films for active photonic devices," Opt. Mater. 31, 1054-1058 (2009). [CrossRef]
  14. P. Rabiei and W. H. Steier, "Lithium niobate ridge waveguides and modulators fabricated using smart guide," Appl. Phys. Lett. 86, 161115 (2005). [CrossRef]
  15. A. Guarino, G. Poberaj, D. Rezzonico, R Degl’Innocenti, P. Gunter, "Electro-optically tunable microring resonators in lithium niobate," Nat. Photonics 1, 407-410 (2007). [CrossRef]
  16. M. Koechlin, G. Poberaj, P. Gunter, "High-resolution laser lithography system based on two-dimensional acousto-optic deflection," Rev. Sci. Instrum. 80, 085105 (2009). [CrossRef] [PubMed]
  17. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express 8, 173-190 (2001). [CrossRef] [PubMed]
  18. S.G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, "Guided modes in photonic crystal slabs," Phys. Rev. B 60, 5751-5758 (1999). [CrossRef]
  19. T. Weng and G. Y. Guo, "Band structures of honeycomb photonic crystal slabs," J. Appl. Phys. 99, 093102 (2006). [CrossRef]
  20. J.-P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Computat. Phys. 114, 185-200 (1994). [CrossRef]
  21. S. D. Gedney, "An Anisotropic Perfectly Matched Layer-Absorbing Medium for the Truncation of FDTD Lattices," IEEE Trans. Antennas Propag. 44, 1630-1639 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited