OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 22 — Oct. 26, 2009
  • pp: 20313–20320

Effect of multiple wavelengths combination on laser-induced damage in multilayer mirrors

Ming Zhou, Jianda Shao, Zhengxiu Fan, Yuan-An Zhao, and Dawei Li  »View Author Affiliations

Optics Express, Vol. 17, Issue 22, pp. 20313-20320 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (258 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The damage effect of the combined irradiation of 1ω and 3ω in multilayer films was investigated. The experiments were held in both the Laser Induced Damage Threshold (LIDT) mode and the damage probability mode. Moreover, the effect of the laser pre-conditioning was also discussed. It was found that with two wavelengths illumination simultaneously, the number of the sensitive defects still govern the damage probability of the samples, and the energy absorption of the defects to pulse laser is a basic process in causing damage. Additionally, correlative theory models were built to explain the experimental results.

© 2009 OSA

OCIS Codes
(140.3440) Lasers and laser optics : Laser-induced breakdown
(160.4670) Materials : Optical materials
(230.1360) Optical devices : Beam splitters

ToC Category:
Lasers and Laser Optics

Original Manuscript: June 22, 2009
Revised Manuscript: July 25, 2009
Manuscript Accepted: August 28, 2009
Published: October 22, 2009

Ming Zhou, Jianda Shao, Zhengxiu Fan, Yuan-An Zhao, and Dawei Li, "Effect of multiple wavelengths combination on laser-induced damage in multilayer mirrors," Opt. Express 17, 20313-20320 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. J. De Yoreo, A. K. Burnham, and P. K. Whitman, “Developing KH2PO4 and KD2PO4 crystals for the world’s most powerful laser,” Int. Mater. Rev. 47(3), 113–152 (2002). [CrossRef]
  2. C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004). [CrossRef] [PubMed]
  3. C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91(12), 127402 (2003). [CrossRef] [PubMed]
  4. H. Kouta, “Wavelength Dependence of Repetitive-Pulse Laser-Induced Damage Threshold in β-BaB(2)O(4).,” Appl. Opt. 38(3), 545–547 (1999). [CrossRef]
  5. C. J. Stolz, S. Hafeman, and T. V. Pistor, “Light intensification modeling of coating inclusions irradiated at 351 and 1053 nm,” Appl. Opt. 47(13), C162–C166 (2008). [CrossRef] [PubMed]
  6. P. DeMange, R. A. Negres, A. M. Rubenchik, H. B. Radousky, M. D. Feit, and S. G. Demos, 
“Understanding and predicting the damage performance of KDxH2−xPO4 crystals under simultaneous exposure to 532 and 355-nm pulses,” Appl. Phys. Lett. 89(18), 181922–181923 (2006). [CrossRef]
  7. P. DeMange, R. A. Negres, A. M. Rubenchik, H. B. Radousky, M. D. Feit, and S. G. Demos, “The energy coupling efficiency of multi-wavelength laser pulses to damage initiating defects in deuterated KH2PO4 nonlinear crystals,” J. Appl. Phys. 103(8), 083122–083128 (2008). [CrossRef]
  8. S. Reyné, M. Loiseau, G. Duchateau, J. Y. Natoli, and L. Lamaignère, “Towards a better understanding of multi-wavelength effects on KDP crystals,” Proc. SPIE 7361, 73610 (2009). [CrossRef]
  9. L. Lamaignère, S. Reyne, M. Loiseau, J. C. Poncetta, and H. Bercegol, “Effect of wavelengths combination on initiation and growth of laser-induced surface damage in SiO2,” Proc. SPIE 6720, 67200 (2007). [CrossRef]
  10. A. N. Mary and E. D. Eugene, “Laser damage growth in fused silica with simultaneous 351nm and 1053nm irradiation,” Proc. SPIE 7132, 71321 (2008).
  11. C. J. Stolz, L. M. Sheehan, S. M. Maricle, and S. Schwartz, “A study of laser conditioning methods of hafnia silica multilayer mirrors,” Proc. SPIE 3578, 144–153 (1998). [CrossRef]
  12. C. J. Stolz, L. M. Sheehan, K. Gunten, R. P. Bevis, and D. J. Smith, “The advantages of evaporation of Hafnium in a reactive environment to manufacture high damage threshold multilayer coatings by electron-beam deposition,” Proc. SPIE 3738, 318–324 (1999). [CrossRef]
  13. P. DeMange, C. W. Carr, R. A. Negres, H. B. Radousky, and S. G. Demos, “Multiwavelength investigation of laser-damage performance in potassium dihydrogen phosphate after laser annealing,” Opt. Lett. 30(3), 221–223 (2005). [CrossRef] [PubMed]
  14. C. Y. Wei, J. D. Shao, H. B. He, K. Yi, and Z. X. Fan, “Mechanism initiated by nanoabsorber for UV nanosecond-pulse-driven damage of dielectric coatings,” Opt. Express 16(5), 3376–3382 (2008). [CrossRef] [PubMed]
  15. H. Krol, L. Gallais, C. Grezesbesset, J. Natoli, and M. Commandré, “Investigation of nanoprecursors threshold distribution in laser-damage testing,” Opt. Commun. 256(1–3), 184–189 (2005). [CrossRef]
  16. J. O. Porteus and S. C. Seitel, “Absolute onset of optical surface damage using distributed defect ensembles,” Appl. Opt. 23(21), 3796–3805 (1984). [CrossRef] [PubMed]
  17. D. Milam, R. A. Bradbury, and M. Bass, “Laser damage threshold for dielectric coating as determined by inclusions,” Appl. Phys. Lett. 23(12), 654–657 (1973). [CrossRef]
  18. G. Duchateau and A. Dyan, “Coupling statistics and heat transfer to study laser-induced crystal damage by nanosecond pulses,” Opt. Express 15(8), 4557–4576 (2007). [CrossRef] [PubMed]
  19. M. R. Lange and J. K. McIver, “Laser damage threshold predictions based on the effects of thermal and optical properties employing a spherical impurity model,” Proc. SPIE 688, 454 (1985).
  20. M. R. Lange and J. K. McIver, “Anomalous absorption in optical coatings,” Proc. SPIE 746, 515 (1987).
  21. H. A. Macleod, Thin Film Optical Filters, third edition, 2001
  22. L. Gallais, J. Capoulade, J. Y. Natoli, and M. Commandré, “Investigation of nano-defect properties in optical coatings by coupling measured and simulated laser damage statistics,” J. Appl. Phys. 104(5), 053120 (2008). [CrossRef]
  23. J. Y. Natoli, L. Gallais, B. Bertussi, A. During, M. Commandré, J. L. Rullier, F. Bonneau, and P. Combis, “Localized pulsed laser interaction with submicronic gold particles embedded in silica: a method for investigating laser damage initiation,” Opt. Express 11(7), 824–829 (2003). [CrossRef] [PubMed]
  24. J. Dijon, G. Ravel, and B. André, “Thermomechanical model of mirror laser damage at 1.06pm. Part 2: flat bottom pits formation,” Proc. SPIE 3578, 398–407 (1998). [CrossRef]
  25. M. D. Feit, A. M. Rubenchik, and J. B. Trenholme, “Simple model of laser damage initiation and conditioning in frequency conversion crystals,” Proc. SPIE 5991, 59910 (2005). [CrossRef]
  26. M. D. Feit and A. M. Rubenchik, “Implication of nanoabsorber initiators for damage probability curves, pulse length scaling and laser conditioning,” Proc. SPIE 5273, 74–82 (2004). [CrossRef]
  27. Z. L. Xia, Z. X. Fan, and J. D. Shao, “A New theory for evaluating the number density of inclusions in films,” Appl. Surf. Sci. 252(23), 8235–8238 (2006). [CrossRef]
  28. L. Gallais, J. Y. Natoli, and C. Amra, “Statistical study of single and multiple pulse laser-induced damage in glasses,” Opt. Express 25, 1465–1474 (2002).
  29. M. Zhou, J. D. Shao, Z. X. Fan, G. H. Hu, and Y. G. Shan, “Damage performance of thin-film beam splitter for third harmonic separation under simultaneous exposure to 1ω and 3ω pulses,” Opt. Commun. 282(15), 3132–3135 (2009). [CrossRef]
  30. J. Capoulade, L. Gallais, J. Y. Natoli, and M. Commandré, “Multiscale analysis of the laser-induced damage threshold in optical coatings,” Appl. Opt. 47(29), 5272–5280 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited