OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 22 — Oct. 26, 2009
  • pp: 20321–20326

Electrically controllable photonic molecule laser

G. Fasching, Ch. Deutsch, A. Benz, A. M. Andrews, P. Klang, R. Zobl, W. Schrenk, G. Strasser, P. Ragulis, V. Tamošiūnas, and K. Unterrainer  »View Author Affiliations


Optics Express, Vol. 17, Issue 22, pp. 20321-20326 (2009)
http://dx.doi.org/10.1364/OE.17.020321


View Full Text Article

Enhanced HTML    Acrobat PDF (957 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have studied the coherent intercavity coupling of the evanescent fields of two microdisk terahertz quantum-cascade lasers. The electrically controllable optical coupling of the single-mode operating lasers has been observed for cavity spacings up to 30 µm. The strongest coupled photonic molecule with 2 µm intercavity spacing allows to conditionally switch the optical emission by the electrical modulation of only one microdisk. The lasing threshold characteristics demonstrate the linear dependence of the gain of a quantum-cascade laser on the applied electric field.

© 2009 Optical Society of America

OCIS Codes
(130.0250) Integrated optics : Optoelectronics
(260.3090) Physical optics : Infrared, far
(140.3945) Lasers and laser optics : Microcavities
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: September 8, 2009
Revised Manuscript: October 9, 2009
Manuscript Accepted: October 12, 2009
Published: October 23, 2009

Citation
G. Fasching, Ch. Deutsch, A. Benz, A. M. Andrews, P. Klang, R. Zobl, W. Schrenk, G. Strasser, P. Ragulis, V. Tamošiūnas, and K. Unterrainer, "Electrically controllable photonic molecule laser," Opt. Express 17, 20321-20326 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-22-20321


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Le Nguyen Binh, Photonic Signal Processing: Techniques and Applications (CRC Press, FL, USA, 2007). [CrossRef]
  2. E. Ozbay, "Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions," Science 311, 189-193 (2006). [CrossRef] [PubMed]
  3. A. Yariv, and X. Sun, "Supermode Si/III-V hybrid lasers, optical amplifiers and modulators: A proposal and analysis," Opt. Express 15, 9147-9151 (2007). [CrossRef] [PubMed]
  4. H. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and Ch. M. Lieber, "A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source," Nature Photon. 2, 622-626 (2008). [CrossRef]
  5. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum Cascade Laser," Science 264, 553-556 (1994). [CrossRef] [PubMed]
  6. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor heterostructure laser," Nature 417, 156-159 (2002). [CrossRef] [PubMed]
  7. C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, "High- Power Directional Emission from Microlasers with Chaotic Resonators," Science 280, 1556-1564 (1998). [CrossRef] [PubMed]
  8. G. Fasching, A. Benz, K. Unterrainer, R. Zobl, A. M. Andrews, T. Roch,W. Schrenk, and G. Strasser, "Terahertz microcavity quantum-cascade lasers," Appl. Phys. Lett. 87, 211112 (2005). [CrossRef]
  9. L. Mahler, A. Tredicucci, F. Beltram, Ch. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, "Vertically emitting microdisk lasers," Nature Photon. 3, 46-49 (2009). [CrossRef]
  10. E. Mujagic, Ch. Deutsch, H. Detz, P. Klang, M. Nobile, A. M. Andrews, W. Schrenk, K. Unterrainer, and G. Strasser, "Vertically emitting terahertz quantum cascade ring lasers," Appl. Phys. Lett. 95, 011120 (2009). [CrossRef]
  11. H. Zhang, L. A. Dunbar, G. Scalari, R. Houdre, and J. Faist, "Terahertz photonic crystal quantum cascade lasers," Opt. Express 15, 16818-16827 (2007). [CrossRef] [PubMed]
  12. Y. Chassagneux, R. Colombelli,W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, "Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions," Nature 457, 174-178 (2009). [CrossRef] [PubMed]
  13. A. Benz, Ch. Deutsch, G. Fasching, K. Unterrainer, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, "Active photonic crystal terahertz laser," Opt. Express 17, 941-946 (2009). [CrossRef] [PubMed]
  14. M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, "Optical Modes in Photonic Molecules," Phys. Rev. Lett. 81, 2582-2585 (1998). [CrossRef]
  15. T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, "Tight-Binding Photonic Molecule Modes of Resonant Bispheres," Phys. Rev. Lett. 82, 4623-4626 (1999). [CrossRef]
  16. Y. P. Rakovich, J. F. Donegan, M. Gerlach, A. L. Bradley, T. M. Connolly, J. J. Boland, N. Gaponik, and A. Rogach, "Fine structure of coupled optical modes in photonic molecules," Phys. Rev. A 70, 051801 (2004). [CrossRef]
  17. A. Nakagawa, S. Ishii, and T. Baba, "Photonic molecule laser composed of GaInAsP microdisks," Appl. Phys. Lett. 86, 041112 (2005). [CrossRef]
  18. B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, "3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation," Appl. Phys. Lett. 82, 1015-1017 (2003). [CrossRef]
  19. V. Tamošiūnas, Z. Kancleris, M. Dagysa, R. Simniskisa, M. Tamosiunienea, G. Valusisa, G. Strasser, and K. Unterrainer, "Finite-Difference Time-Domain Simulation of Mid- and Far-Infrared Quantum Cascade Lasers," Act. Phys. Pol. A 107, 179-183 (2005).
  20. The Yee cell size was set to 1.4 mm and the average relative dielectric constant of the heterostructure was set to 11.75 based on the better fitting of the spectra with earlier single cavity simulations. The material small signal gain maximum for the active devices and the small signal loss maximum for the absorbing devices were set to 10.7 cm-1 and 107 cm-1 at 2.63 THz, respectively.
  21. C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, "Resonant Tunneling in Quantum Cascade Lasers," IEEE J. Quantum Electron. 34, 1722-1729 (1998). [CrossRef]
  22. J. Kröll, J. Darmo, S. S. Dhillon, X. Marcadet, M. Calligaro, C. Sirtori, and Karl Unterrainer, "Phase-resolved measurements of stimulated emission in a laser," Nature 449, 698-701 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited