OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 22 — Oct. 26, 2009
  • pp: 20342–20348

Real-time visualization of Karman vortex street in water flow field by using digital holography

Weiwei Sun, Jianlin Zhao, Jianglei Di, Qian Wang, and Le Wang  »View Author Affiliations

Optics Express, Vol. 17, Issue 22, pp. 20342-20348 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (200 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The Karman vortex street generated behind a circular cylinder in water flow field is displayed and analyzed in real time by means of digital holography. Using a modified Mach-Zehnder interferometer, a digital hologram of the flow field in still state and then a video of continuous digital holograms in flowing state are recorded at 14.6 frames per second by a CCD camera, respectively. A series of sequential phase maps of the flow field are numerically reconstructed from the holograms in different states above based on double-exposure holographic interferometry. By seriating these phase maps, the shape and evolution of Karman vortex street can be displayed in real time in the form of a movie. For comparison, numerical simulation of the Karman vortex street under the boundary conditions adopted in the experiment is also presented, and the consistent results indicate that the experimental observation of Karman vortex street by using digital holography is successful and feasible.

© 2009 OSA

OCIS Codes
(090.2870) Holography : Holographic display
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(280.2490) Remote sensing and sensors : Flow diagnostics
(280.7060) Remote sensing and sensors : Turbulence
(090.1995) Holography : Digital holography
(090.5694) Holography : Real-time holography

ToC Category:

Original Manuscript: August 6, 2009
Revised Manuscript: September 26, 2009
Manuscript Accepted: October 1, 2009
Published: October 23, 2009

Weiwei Sun, Jianlin Zhao, Jianglei Di, Qian Wang, and Le Wang, "Real-time visualization of Karman vortex street in water flow field by using digital holography," Opt. Express 17, 20342-20348 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Tanda and F. Devia, “Application of a schlieren technique to heat transfer measurements in free-convection,” Exp. Fluids 24(4), 285–290 (1998). [CrossRef]
  2. S. P. Trainoff and D. S. Cannell, “Physical optics treatment of the shadowgraph,” Phys. Fluids 14(4), 1340–1363 (2002). [CrossRef]
  3. J. P. Crimaldi and J. R. Koseff, “High-resolution measurements of the spatial and temporal scalar structure of a turbulent plume,” Exp. Fluids 31(1), 90–102 (2001). [CrossRef]
  4. G. Pan and H. Meng, “Digital holography of particle fields: reconstruction by use of complex amplitude,” Appl. Opt. 42(5), 827–833 (2003). [CrossRef] [PubMed]
  5. B. Javidi and E. Tajahuerce, “Three-dimensional object recognition by use of digital holography,” Opt. Lett. 25(9), 610–612 (2000). [CrossRef]
  6. S. Grilli, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, and R. Meucci, “Whole optical wavefields reconstruction by digital holography,” Opt. Express 9(6), 294–302 (2001). [CrossRef] [PubMed]
  7. C. Qin, J. L. Zhao, J. L. Di, L. Wang, Y. L. Yu, and W. Z. Yuan, “Visually testing the dynamic character of a blazed-angle adjustable grating by digital holographic microscopy,” Appl. Opt. 48(5), 919–923 (2009). [CrossRef] [PubMed]
  8. C. P. McElhinney, B. M. Hennelly, and T. J. Naughton, “Extended focused imaging for digital holograms of macroscopic three-dimensional objects,” Appl. Opt. 47(19), D71–D79 (2008). [CrossRef] [PubMed]
  9. Y. C. Zhang, J. L. Zhao, Q. Fan, W. Zhang, and S. Yang, “Improving the reconstruction quality with extension and apodization of the digital hologram,” Appl. Opt. 48(16), 3070–3074 (2009). [CrossRef] [PubMed]
  10. J. L. Zhao, H. Z. Jiang, and J. L. Di, “Recording and reconstruction of a color holographic image by using digital lensless Fourier transform holography,” Opt. Express 16(4), 2514–2519 (2008). [CrossRef] [PubMed]
  11. C. J. Mann, L. F. Yu, C. M. Lo, and M. K. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13(22), 8693–8698 (2005). [CrossRef] [PubMed]
  12. J. Garcia-Sucerquia, W. B. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45(5), 836–850 (2006). [CrossRef] [PubMed]
  13. J. L. Di, J. L. Zhao, H. Z. Jiang, P. Zhang, Q. Fan, and W. W. Sun, “High resolution digital holographic microscopy with a wide field of view based on a synthetic aperture technique and use of linear CCD scanning,” Appl. Opt. 47(30), 5654–5659 (2008). [CrossRef] [PubMed]
  14. L. Xu, X. Y. Peng, J. M. Miao, and A. K. Asundi, “Studies of digital microscopic holography with applications to microstructure testing,” Appl. Opt. 40(28), 5046–5051 (2001). [CrossRef]
  15. G. Pedrini, W. Osten, and M. E. Gusev, “High-speed digital holographic interferometry for vibration measurement,” Appl. Opt. 45(15), 3456–3462 (2006). [CrossRef] [PubMed]
  16. J. L. Zhao, P. Zhang, J. B. Zhou, D. X. Yang, D. S. Yang, and E. P. Li, “Visualizations of light-induced refractive index changes in photorefractive crystals employing digital holography,” Chin. Phys. Lett. 20(10), 1748–1751 (2003). [CrossRef]
  17. F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31(2), 178–180 (2006). [CrossRef] [PubMed]
  18. J. L. Zhao, H. Q. Lu, X. S. Song, J. F. Li, and Y. H. Ma, “Optical image encryption based on multistage fractional Fourier transforms and pixel scrambling technique,” Opt. Commun. 249(4-6), 493–499 (2005). [CrossRef]
  19. M. M. Hossain, D. S. Mehta, and C. Shakher, “Refractive index determination: an application of lensless Fourier digital holography,” Opt. Eng. 45(10), 106–203 (2006). [CrossRef]
  20. C. Herman and E. Kang, “Experimental visualization of temperature fields and study of heat transfer enhancement in oscillatory flow in a grooved channel,” Heat Mass Transfer. 37(1), 87–99 (2001). [CrossRef]
  21. V. Katti and S. V. Prabhu, “Heat transfer enhancement on a flat surface with axisymmetric detached ribs by normal impingement of circular air jet,” Int. J. Heat Fluid Flow 29(5), 1279–1294 (2008). [CrossRef]
  22. M. M. Hossain and C. Shakher, “Temperature measurement in laminar free convective flow using digital holography,” Appl. Opt. 48(10), 1869–1877 (2009). [CrossRef] [PubMed]
  23. J. Colombani and J. Bert, “Holographic interferometry for the study of liquids,” J. Mol. Liq. 134(1-3), 8–14 (2007). [CrossRef]
  24. P. R. Spalart and S. R. Allmaras, “A one-equation turbulence model for aerodynamic flows,” AIAA Pap. 1, 5–21 (1992).
  25. T. Kreis, Handbook of Holographic Interferometry (WILEY-VCH GmbH and Co. KGaA, 2005).
  26. P. L. Bourget and D. Marichal, “Remarks about variations in the drag coefficient of circular cylinders moving through water,” Ocean Eng. 17(6), 569–585 (1990). [CrossRef]
  27. P. Gorski, “Some aspects of the dynamic cross-wind response of tall industrial chimney,” Wind & Struct 12, 259–279 (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

Supplementary Material

» Media 1: AVI (3800 KB)     
» Media 2: AVI (3741 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited