OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 22 — Oct. 26, 2009
  • pp: 20393–20400

Phase sensitive amplification based on quadratic cascading in a periodically poled lithium niobate waveguide

Kwang Jo Lee, Francesca Parmigiani, Sheng Liu, Joseph Kakande, Periklis Petropoulos, Katia Gallo, and David Richardson  »View Author Affiliations


Optics Express, Vol. 17, Issue 22, pp. 20393-20400 (2009)
http://dx.doi.org/10.1364/OE.17.020393


View Full Text Article

Enhanced HTML    Acrobat PDF (233 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and demonstrate phase-sensitive amplification based on cascaded second harmonic generation and difference frequency generation within a periodically poled lithium niobate waveguide. Excellent agreement between our numerical simulations and proof-of-principle experiments using a 3-cm waveguide device operating at wavelengths around 1550 nm is obtained. Our experiments confirm the validity and practicality of the approach and illustrate the broad gain bandwidths achievable. Additional simulation results show that the maximum gain/attenuation factor increases quadratically with input pump power, reaching a value of ± 19.0dB at input pump powers of 33 dBm for a 3 cm-long waveguide. Increased gains/reduced powers for a fixed gain could be achieved using longer crystals.

© 2009 OSA

OCIS Codes
(130.3730) Integrated optics : Lithium niobate
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(230.4320) Optical devices : Nonlinear optical devices
(230.2285) Optical devices : Fiber devices and optical amplifiers
(230.4480) Optical devices : Optical amplifiers

ToC Category:
Nonlinear Optics

History
Original Manuscript: August 18, 2009
Revised Manuscript: September 29, 2009
Manuscript Accepted: September 29, 2009
Published: October 23, 2009

Citation
Kwang Jo Lee, Francesca Parmigiani, Sheng Liu, Joseph Kakande, Periklis Petropoulos, Katia Gallo, and David Richardson, "Phase sensitive amplification based on quadratic cascading in a periodically poled lithium niobate waveguide," Opt. Express 17, 20393-20400 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-22-20393


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. M. Caves, “Quantum limits on noise in linear amplifiers,” Phys. Rev. D Part. Fields 26(8), 1817–1839 (1982). [CrossRef]
  2. J. A. Levenson, I. Abram, T. Rivera, and P. Grangier, “Reduction of quantum-noise in optical parametric amplification,” J. Opt. Soc. Am. B 10(11), 2233–2238 (1993). [CrossRef]
  3. Z. Y. Ou, S. F. Pereira, and H. J. Kimble, “Quantum noise reduction in optical amplification,” Phys. Rev. Lett. 70(21), 3239–3242 (1993). [CrossRef] [PubMed]
  4. K. Croussore, I. Kim, Y. Han, C. Kim, G. Li, and S. Radic, “Demonstration of phase-regeneration of DPSK signals based on phase-sensitive amplification,” Opt. Express 13(11), 3945–3950 (2005). [CrossRef] [PubMed]
  5. K. Croussore and G. Li, “Phase and amplitude regeneration of differential phase-shift keyed signals using phase-sensitive amplification,” IEEE J. Sel. Top. Quantum Electron. 14(3), 648–658 (2008). [CrossRef]
  6. R.-D. Li, P. Kumar, and W. L. Kath, “Dispersion compensation with phase-sensitive optical amplifiers,” J. Lightwave Technol. 12(3), 541–549 (1994). [CrossRef]
  7. W. Imajuku and A. Takada, “Reduction of fiber-nonlinearity-enhanced amplifier noise by means of phase-sensitive amplifiers,” Opt. Lett. 22(1), 31–33 (1997). [CrossRef] [PubMed]
  8. D. J. Lovering, J. A. Levenson, P. Vidakovic, J. Webjörn, and P. St. J. Russell, “Noiseless optical amplification in quasi-phase-matched bulk lithium niobate,” Opt. Lett. 21(18), 1439–1441 (1996). [CrossRef] [PubMed]
  9. T. Tajima, Y. Etou, and T. Hirano, “Parametric amplification in a periodically poled lithium niobate waveguide at telecommunication wavelength,” in Proceedings of International Quantum Electronics Conference (Toshi Center Hotel Tokyo, 2005), pp. 1131–1132.
  10. Y. Eto, T. Tajima, Y. Zhang, and T. Hirano, “Observation of squeezed light at 1.535 microm using a pulsed homodyne detector,” Opt. Lett. 32(12), 1698–1700 (2007). [CrossRef] [PubMed]
  11. Y. Eto, T. Tajima, Y. Zhang, and T. Hirano, “Observation of quadrature squeezing in a χ2 nonlinear waveguide using a temporally shaped local oscillator pulse,” Opt. Express 16(14), 10650–16657 (2008). [CrossRef] [PubMed]
  12. H. P. Yuen and J. H. Shapiro, “Generation and detection of two-photon coherent states in degenerate four-wave mixing,” Opt. Lett. 4(10), 334–336 (1979). [CrossRef] [PubMed]
  13. P. Kumar and J. H. Shapiro, “Squeezed-state generation via forward degenerate four-wave mixing,” Phys. Rev. A 30(3), 1568–1571 (1984). [CrossRef]
  14. C. J. McKinstrie and S. Radic, “Phase-sensitive amplification in a fiber,” Opt. Express 12(20), 4973–4979 (2004). [CrossRef] [PubMed]
  15. R. Tang, J. Lasri, P. S. Devgan, V. Grigoryan, P. Kumar, and M. Vasilyev, “Gain characteristics of a frequency nondegenerate phase-sensitive fiber-optic parametric amplifier with phase self-stabilized input,” Opt. Express 13(26), 10483–10493 (2005). [CrossRef] [PubMed]
  16. R. Tang, P. S. Devgan, V. S. Grigoryan, P. Kumar, and M. Vasilyev, “In-line phase-sensitive amplification of multi-channel CW signals based on frequency nondegenerate four-wave-mixing in fiber,” Opt. Express 16(12), 9046–9053 (2008). [CrossRef] [PubMed]
  17. C. Lundström, J. Kakande, P. A. Andrekson, P. Petropoulos, F. Parmigiani, and D. J. Richardson, “Experimental comparison of gain and saturation characteristics of a parametric amplifier in phase-sensitive and phase-insensitive mode,” presented at the European Conference on Optical Communication, Austria Center Vienna, Vienna, 20–24 Sept. 2009.
  18. C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightwave Technol. 24(7), 2579–2592 (2006). [CrossRef]
  19. K. Gallo, G. Assanto, and G. I. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71(8), 1020–1022 (1997). [CrossRef]
  20. M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999). [CrossRef]
  21. J. Wang, J. Sun, X. Zhang, and D. Huang, “All-optical tunable wavelength conversion with extinction ratio enhancement using periodically poled lithium niobate waveguides,” J. Lightwave Technol. 26(17), 3137–3148 (2008). [CrossRef]
  22. J. Wang, J. Sun, X. Zhang, D. Huang, and M. M. Fejer, “All-optical format conversions using periodically poled lithium niobate waveguides,” IEEE J. Quantum Electron. 45(2), 195–205 (2009). [CrossRef]
  23. J. E. McGeehan, M. Giltrelli, and A. E. Willner, “All-optical digital 3-input AND gate using sum- and difference-frequency generation in a PPLN waveguide,” Electron. Lett. 43(7), 409–410 (2007). [CrossRef]
  24. H. Ishizuki, T. Suhara, M. Fujimura, and H. Nishihara, “Wavelength conversion type picosecond optical switching using a waveguide QPM-SHG/DFG device,” Opt. Quantum Electron. 33(7/10), 953–961 (2001). [CrossRef]
  25. Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19(11), 861–863 (2007). [CrossRef]
  26. K. Gallo and G. Assanto, “Analysis of lithium niobate all-optical wavelength shifters for the third spectral window,” J. Opt. Soc. Am. B 16(5), 741–753 (1999). [CrossRef]
  27. C. Liberale, I. Cristiani, L. Razzari, and V. Degiorgio, “Numerical study of cascaded wavelength conversion in quadratic media,” J. Opt. A 4, 457–462 (2002). [CrossRef]
  28. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14(9), 2268–2294 (1997). [CrossRef]
  29. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962). [CrossRef]
  30. S.-K. Choi, M. Vasilyev, and P. Kumar, “Noiseless optical amplification of images,” Phys. Rev. Lett. 83(10), 1938–1941 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited