OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 22 — Oct. 26, 2009
  • pp: 20430–20439

High reflection mirrors for pulse compression gratings

S. Palmier, J. Neauport, N. Baclet, E. Lavastre, and G. Dupuy  »View Author Affiliations


Optics Express, Vol. 17, Issue 22, pp. 20430-20439 (2009)
http://dx.doi.org/10.1364/OE.17.020430


View Full Text Article

Enhanced HTML    Acrobat PDF (411 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report an experimental investigation of high reflection mirrors used to fabricate gratings for pulse compression application at the wavelength of 1.053µm. Two kinds of mirrors are studied: the mixed Metal MultiLayer Dielectric (MMLD) mirrors which combine a gold metal layer with some e-beam evaporated dielectric bilayers on the top and the standard e-beam evaporated MultiLayer Dielectric (MLD) mirrors. Various samples were manufactured, damage tested at a pulse duration of 500fs. Damage sites were subsequently observed by means of Nomarski microscopy and white light interferometer microscopy. The comparison of the results evidences that if MMLD design can offer damage performances rather similar to MLD design, it also exhibits lower stresses; being thus an optimal mirror substrate for a pulse compression grating operating under vacuum.

© 2009 OSA

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(140.7090) Lasers and laser optics : Ultrafast lasers
(320.2250) Ultrafast optics : Femtosecond phenomena
(350.1820) Other areas of optics : Damage

ToC Category:
Ultrafast Optics

History
Original Manuscript: August 24, 2009
Manuscript Accepted: September 25, 2009
Published: October 23, 2009

Citation
S. Palmier, J. Neauport, N. Baclet, E. Lavastre, and G. Dupuy, "High reflection mirrors for pulse compression gratings," Opt. Express 17, 20430-20439 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-22-20430


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Blanchot, G. Behar, T. Berthier, E. Bignon, F. Boubault, C. Chappuis, H. Coic, C. Damiens-Dupont, J. Ebrardt, Y. Gautheron, P. Gibert, O. Hartmann, E. Hugonnot, F. Laborde, D. Lebeaux, J. Luce, S. Montant, S. Noailles, J. Néauport, D. Raffestin, B. Remy, A. Roques, F. Sautarel, M. Sautet, C. Sauteret, and C. Rouyer, “Overview of PETAL, the multi-Petawatt project on the LIL facility,” Plasma Phys. Contr. Fusion 50(12), 124045–124055 (2008). [CrossRef]
  2. L. J. Waxer, D. N. Maywar, J. H. Kelly, T. J. Kessler, B. E. Kruschwitz, S. J. Loucks, R. L. McCrory, D. D. Meyerhofer, S. F. B. Morse, C. Stoeckl, and J. D. Zuegel, “High-energy petawatt capability for the Omega laser,” Opt. Photon. News 16, 30–36 (2005). [CrossRef]
  3. C. P. J. Barty, M. Key, J. Britten, R. Beach, G. Beer, C. Brown, S. Bryan, J. Caird, T. Carlson, J. Dawson, A. C. Erlandson, D. Fittinghoff, M. Hermann, C. Hoaglan, A. Iyer, L. Jones, I. Jovanovic, A. Komashko, O. Landen, Z. Liao, W. Molander, S. Mitchell, E. Moses, N. Nielsen, H.-H. Ngyuen, J. Nissen, S. Payne, D. Pennington, L. Risinger, M. Rushford, K. Skulina, M. Spaeth, B. Stuart, G. Tietbohl, and B. Wattellier, “An overview of LLNL high-energy short-pulse technology for advanced radiography of laser fusion experiments,” Nucl. Fusion 44(12), S266–S275 (2004). [CrossRef]
  4. C. Le Blanc, C. Felix, J. C. Lagron, N. Forget, Ph. Hollander, M. Sautivet, C. Sauteret, F. Amiranoff, and A. Migus, “The petawatt laser glass chain at LULI: from the diode-pumped front end to the new generation of compact compressors,” in Proceedings of Third International Conference on Inertial Fusion Sciences and Applications, B. A. Hammel, D. D. Meyerhofer, J. M. ter Vehn, and H. Azechi, eds. (American Nuclear Society) pp. 608–611 (2004).
  5. C. N. Danson, P. A. Brummitt, R. J. Clarke, J. L. Collier, B. Fell, A. J. Frackiewicz, S. Hancock, S. Hawkes, C. Hernandez-Gomez, P. Holligan, M. H. R. Hutchinson, A. Kidd, W. J. Lester, I. O. Musgrave, D. Neely, D. R. Neville, P. A. Norreys, D. A. Pepler, C. J. Reason, W. Shaikh, T. B. Winstone, R. W. W. Wyatt, and B. E. Yborn, “Vulcan petawatt–an ultra-high intensity interaction facility,” Nucl. Fusion 44(12), S239–S246 (2004). [CrossRef]
  6. K. Mima, H. Azechi, Y. Johzaki, Y. Kitagawa, R. Kodama, Y. Kozaki, N. Miyanaga, K. Nagai, H. Nagatomo, M. Nakai, H. Nishimura, T. Norimatsu, H. Shiraga, K. Tanaka, Y. Izawa, Y. Nakao, and H. Sakagami, “Present status of fast ignition research and prospects of FIREX project,” Fus. Sci. Technol. 47, 662–666 (2005).
  7. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985). [CrossRef]
  8. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Optical ablation by high power short-pulse lasers,” J. Opt. Soc. Am. B 13(2), 459–468 (1996). [CrossRef]
  9. M. D. Perry, R. D. Boyd, J. A. Britten, B. W. Shore, C. Shannon, and L. Li, “High efficiency multilayer dielectric diffraction gratings,” Opt. Lett. 20(8), 940–942 (1995). [CrossRef] [PubMed]
  10. J. Keck, J. B. Oliver, T. J. Kessler, H. Huang, J. Barone, J. Hettrick, A. L. Rigatti, T. Hoover, K. L. Marshall, A. W. Schmid, A. Kozlov, and T. Z. Kosc, “Manufacture and development of multilayer diffraction gratings,” in Proceedings of Laser-induced Damage Threshold in Optical Materials, G. J. Exarhos, A. H. Guenther, K. L. Lewis, D. Ristau, M.J. Soileau, C.J. Stolz, Eds, Proc. SPIE 5991, 5991G (2006).
  11. J. Neauport, E. Lavastre, G. Razé, G. Dupuy, N. Bonod, M. Balas, G. de Villele, J. Flamand, S. Kaladgew, and F. Desserouer, “Effect of electric field on laser induced damage threshold of multilayer dielectric gratings,” Opt. Express 15(19), 12508–12522 (2007). [CrossRef] [PubMed]
  12. P. Rambo, J. Schwarz, and I. Smith, “Development of a mirror backed volume phase grating with potential for large aperture and high damage threshold,” Opt. Commun. 260(2), 403–414 (2006). [CrossRef]
  13. J. R. Marciante and D. H. Raguin, “High-efficiency, high-dispersion diffraction gratings based on total internal reflection,” Opt. Lett. 29(6), 542–544 (2004). [CrossRef] [PubMed]
  14. T. Clausnitzer, J. Limpert, K. Zöllner, H. Zellmer, H. J. Fuchs, E. B. Kley, A. Tünnermann, M. Jupé, and D. Ristau, “Highly efficient transmission gratings in fused silica for chirped-pulse amplification systems,” Appl. Opt. 42(34), 6934–6938 (2003). [CrossRef] [PubMed]
  15. C. Stolz, J. R. Taylor, W. K. Eickelberg, and J. D. Lindh, “Effects of vacuum exposure on stress and spectral shift of high reflective coatings,” Appl. Opt. 32(28), 5666–5672 (1993). [CrossRef] [PubMed]
  16. H. Leplan, “Les contraintes dans les couches minces optiques”, PhD Thesis (1995).
  17. R. Thielsch, A. Gatto, and N. Kaiser, “Mechanical stress and thermal-elastic properties of oxide coatings for use in the deep-ultraviolet spectral region,” Appl. Opt. 41(16), 3211–3217 (2002). [CrossRef] [PubMed]
  18. D. Smith, M. McCullough, C. Smith, T. Mikami, and T. Jitsuno, “Low stress ion-assisted coatings on fused silica substrates for large aperture laser pulse compression coatings,” in Proceedings of Laser-Induced Damage in Optical Materials: 2008G. J. Exarhos, D. Ristau, M. J. Soileau, and C. J. Stolz Eds, Proc. SPIE 7132, 71320E (2008). [CrossRef]
  19. N. Bonod and J. Neauport, “Optical performances and laser induced damage threshold improvement of diffraction gratings used as compressors in ultra high intensity lasers,” Opt. Commun. 260(2), 649–655 (2006). [CrossRef]
  20. N. Blanchot, G. Marre, J. Néauport, E. Sibé, C. Rouyer, S. Montant, A. Cotel, C. Le Blanc, and C. Sauteret, “Synthetic aperture compression scheme for a multipetawatt high-energy laser,” Appl. Opt. 45(23), 6013–6021 (2006). [CrossRef] [PubMed]
  21. J. B. Oliver, T. J. Kessler, H. Huang, J. Keck, A. L. Rigatti, A. W. Schmid, A. Kozlov, and T. Z. Kosc, “Thin-film design for multilayer diffraction gratings, ” in Proceedings of Laser-induced Damage Threshold in Optical Materials, G. J. Exarhos, A. H. Guenther, K. L. Lewis, D. Ristau, M.J. Soileau, C. J. Stolz, Eds, Proc. SPIE 5991 (2006).
  22. S. Liu, J. Ma, Z. Shen, Y. Jin, J. Shao, and Z. Fan, “Optimization of thin-film design for multi-layer dielectric gratings,” Appl. Surf. Sci. 253(7), 3642–3648 (2007). [CrossRef]
  23. http://www.optilayer.com
  24. J. Y. Robic, H. Leplan, Y. Pauleau, and B. Rafin, “Residual stress in silicon dioxide thin films produced by ion-assisted deposition,” Thin Solid Films 290, 34–39 (1996). [CrossRef]
  25. G. Théret, “Les couches minces de HfO2. Etude de leurs hétérogénéités d’indice de réfraction et de leur interface avec SiO2,” PhD Thesis, (2001).
  26. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995). [CrossRef] [PubMed]
  27. M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71(11), 115109 (2005). [CrossRef]
  28. TFCalc, Software Spectra Inc., Portland, OR, USA, www.sci-soft.com
  29. M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36(11), 3688 (1965). [CrossRef]
  30. J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27(2), 1155–1172 (1983). [CrossRef]
  31. T. Z. Kosc, A. A. Kozlov, and A. W. Schmid, “Formation of periodic microstructures on multilayer dielectric gratings prior to total ablation,” Opt. Express 14(22), 10921–10929 (2006). [CrossRef] [PubMed]
  32. D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser mirror damage in germanium at 10.6µm,” Appl. Phys. Lett. 23(11), 598 (1973). [CrossRef]
  33. A. Brenner and S. Senderoff, “Calculation of stress in electrodeposits from the curvature of a plated strip,” J. Res. Natl. Bur. Stand. 42, 105–123 (1949).
  34. A. E. Ennos, “Stresses developed in optical film coating,” Appl. Opt. 5(1), 51 (1966). [CrossRef] [PubMed]
  35. H. P. Murbach and H. Wilman, “The origin of stress in metal layers condensed from the vapour in high vacuum,” Proc. Phys. Soc. 66B, 905 (1953).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited