OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 22 — Oct. 26, 2009
  • pp: 20465–20475

Electric currents induced by twisted light in Quantum Rings

G. F. Quinteiro and J. Berakdar  »View Author Affiliations


Optics Express, Vol. 17, Issue 22, pp. 20465-20475 (2009)
http://dx.doi.org/10.1364/OE.17.020465


View Full Text Article

Enhanced HTML    Acrobat PDF (193 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We theoretically investigate the generation of electric currents in quantum rings resulting from the optical excitation with twisted light. Our model describes the kinetics of electrons in a two-band model of a semiconductor-based mesoscopic quantum ring coupled to light having orbital angular momentum (twisted light). We find the analytical solution, which exhibits a “circular” photon-drag effect and an induced magnetization, suggesting that this system is the circular analog of that of a bulk semiconductor excited by plane waves. For realistic values of the electric field and material parameters, the computed electric current can be as large as µA; from an applied perspective, this opens new possibilities to the optical control of the magnetization in semiconductors.

© 2009 Optical Society of America

OCIS Codes
(000.0000) General : General

ToC Category:
Quantum Optics

History
Original Manuscript: August 28, 2009
Revised Manuscript: September 23, 2009
Manuscript Accepted: September 24, 2009
Published: October 23, 2009

Citation
G. F. Quinteiro and J. Berakdar, "Electric currents induced by twisted light in Quantum Rings," Opt. Express 17, 20465-20475 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-22-20465


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Cerbino, L. Peverini, M. A. C. Potenza, A. Robert, P. Bösecke, and M. Giglio, "X- Ray-Scattering Information Obtained From Near-Field Speckle," Nat. Phys. 4, 238 (2008). [CrossRef]
  2. T. Brixner and G. Gerber, "Femtosecond polarization pulse shaping," Opt. Lett. 26, 557 (2001). [CrossRef]
  3. I. A. Walmsley, "Looking to the Future of Quantum Optics," Science 319, 1211 (2008). [CrossRef] [PubMed]
  4. B. Hillebrands and K. Ounadjela, Spin Dynamics in Confined Magnetic Structures II (Springer, Berlin, 2003). [CrossRef]
  5. C. H. Back, R. Allenspach, W. Weber, S. S. P. Parkin, D. Weller, E. L. Garwin, and H. C. Siegmann, "Minimum Field Strength in Precessional Magnetization Reversal," Science 285, 864 (1999). [CrossRef] [PubMed]
  6. Y. Acremann, C. H. Back, M. Buess, O. Portmann, A. Vaterlaus, D. Pescia, and H. Melchior, "Imaging Precessional Motion of the Magnetization Vector," Science 290, 492 (2000). [CrossRef] [PubMed]
  7. I. Tudosa, C. Stamm, A. B. Kashuba, F. King, H. C. Siegmann, J. Stohr, G. Ju, B. Lu, and D. Weller, "The ultimate speed of magnetic switching in granular recording media," Nature (London) 428, 831 (2004). [CrossRef]
  8. D. Atkinson, D. A. Allwood, G. Xiong, M. D. Cooke, C. C. Faulkner, and R. P. Cowburn, "Magnetic domain-wall dynamics in a submicrometre ferromagnetic structure," Nat. Mater. 2, 85 (2003). [CrossRef] [PubMed]
  9. Th. Gerrits, H. A. M. van der Berg, J. Hohlfeld, L. Bar, and T. Rasing, "Ultrafast precessional magnetization reversal by picosecond magnetic field pulse shaping," Nature (London) 418, 509 (2002). [CrossRef]
  10. A. Matos Abiague and J. Berakdar, "Photoinduced charge currents in mesoscopic rings," Phys. Rev. Lett. 94, 166801 (2005). [CrossRef] [PubMed]
  11. A. S. Moskalenko, A. Matos Abiague, and J. Berakdar, "Revivals, collapses, and magnetic-pulse generation in quantum rings," Phys. Rev. B 74, 161303 (2006). [CrossRef]
  12. Z.-G. Zhu and J. Berakdar, "Electromagnetic pulse-driven spin-dependent currents in semiconductor quantum rings," Journal of Physics: Condensed Matter 21, 145801 (2009). [CrossRef] [PubMed]
  13. Z.-G. Zhu and J. Berakdar, "Photoinduced nonequilibrium spin and charge polarization in quantum rings," Phys. Rev. B 77, 235438 (2008). [CrossRef]
  14. A. Fuhrer, S. Lüscher, T. Ihn, T. Heinzel, K. Ensslin, W. Wegscheider, and M. Bichler, "Energy spectra of quantum rings," Nature (London) 413, 822 (2001). [CrossRef]
  15. A. Lorke, R. J. Luyken, A. O. Govorov, J. P. Kotthaus, J. M. Garcia, and P. M. Petro, "Spectroscopy of Nanoscopic Semiconductor Rings," Phys. Rev. Lett. 84, 2223 (2000). [CrossRef] [PubMed]
  16. W. Rabaud, L. Saminadayar, D. Mailly, K. Hasselbach, A. Benoît, and B. Etienne, "Persistent currents in mesoscopic connected rings," Phys. Rev. Lett. 86, 3124 (2001). [CrossRef] [PubMed]
  17. P. Mohanty, Ann. Phys. (N.Y.) 8, 549 (1999); E. M. Q. Jariwala, P. Mohanty, M. B. Ketchen, and R. A. Webb, "Diamagnetic persistent current in diffusive normal- metal rings," Phys. Rev. Lett. 86, 1594 (2001). [CrossRef]
  18. E. Dupont, P. B. Corkum, H. C. Liu, M. Buchanan, and Z. R. Wasilewski, "Phase- controlled currents in semiconductors," Phys. Rev. Lett. 74, 3596 (1995). [CrossRef] [PubMed]
  19. K. Gallo and G. Assanto, "All-optical diode based on second-harmonic generation in an asymmetric waveguide," J. Opt. Soc. Am. B 16, 267-269 (1999). [CrossRef]
  20. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes," Phys. Rev. A  458185 (1992). [CrossRef] [PubMed]
  21. L. Allen, S.M. Barnett and M.J. Padgett, Optical Angular Momentum (Bristol: Institute of Physics Publishing, 2003) [CrossRef]
  22. B. Allen, "Introduction to the atoms and angular momentum of light special issue," J. Opt. B. Quantum Semiclassic. Opt. 4, S1-S6 (2002). [CrossRef]
  23. S. Barreiro and J. W. R. Tabosa, "Generation of light carrying orbital angular momentum via induced coherence grating in cold atoms," Phys. Rev. Lett. 90, 133001 (2003). [CrossRef] [PubMed]
  24. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348 (1998). [CrossRef]
  25. B. L. C. Dávila-Romero, D. L. Andrews, and M. Babiker, "A quantum electrody- namics framework for the nonlinear optics of twisted beams," J. Opt. B. Quantum Semiclass. Opt. 4, S66-S72 (2002). [CrossRef]
  26. F. Araoka, T. Verbiest, K. Clays, and A. Persoons, "Interactions of twisted light with chiral molecules: An experimental investigation," Phys. Rev. A 71, 055401. [CrossRef]
  27. S. Al-Awfi and M. Babiker, "Atomic motion in hollow submicron circular cylinders," Phys. Rev. A 61, 033401 (2000). [CrossRef]
  28. G. F. Quinteiro and P. I. Tamborenea, "Electronic transitions in disk-shaped quan- tum dots induced by twisted light," Phys. Rev. B 79, 155450 (2009). [CrossRef]
  29. G. F. Quinteiro and P. I. Tamborenea, "Theory of the optical absorption of light carrying orbital angular momentum by semiconductors," EPL 85, 47001 (2009). [CrossRef]
  30. Pierre Meystre, Murray Sargent III, Elements of Quantum Optics, 4th Edition, (Springer-Verlag, 2007). [CrossRef]
  31. H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors fourth edition (Singapore: World Scientific Publishing Company, 2004)
  32. A. F. Gibson and C. Walker, "Sign reversal of the photon drag effect in p type germanium," J. Phys. C:Solid State Phys. 4, 2209-2219 (1971). [CrossRef]
  33. A. F. Gibson and S. Montasser, "A theoretical description of the photon-drag spec- trum of p-type germanium," J. Phys. C:Solid State Phys. 8, 3147-3157 (1975). [CrossRef]
  34. K. Cameron, A. F. Gibson, J. Giles, C. B. Hatch, M. F. Kimmitt, and S. Shafit, "The photon-drag spectrum of p-type germanium between 2.5 and 11.0mm," J. Phys. C: Solid State Phys. 8, 3137-3146 (1975). [CrossRef]
  35. A. F. Gibson, M. F. Kimmitt, and A. C. Walker, "Photon drag in germanium," Appl. Phys. Lett. 17, 72 (1970). [CrossRef]
  36. A.S. Moskalenko and J. Berakdar "Polarized light bursts from kicked quantum rings," Phys. Rev. A 78, 051804 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited