OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 22 — Oct. 26, 2009
  • pp: 20538–20545

Depth-of-focus (DoF) analysis of a 193nm superlens imaging structure

Zhong Shi, Vladimir Kochergin, and Fei Wang  »View Author Affiliations


Optics Express, Vol. 17, Issue 22, pp. 20538-20545 (2009)
http://dx.doi.org/10.1364/OE.17.020538


View Full Text Article

Enhanced HTML    Acrobat PDF (248 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a design of a 193nm superlens imaging structure to enable the printing of 20nm features. Optical image simulations indicate that the 20nm resolution is feasible for both the periodic grating feature and the two-slit feature. Nominal depth-of-focus (DoF) position for both features is identified through the image contrast calculations. Simulations show that the two features have a common nominal dose at the nominal DoF to resolve 20nm critical dimension when a suitable dielectric material is placed between mask and superlens layer. A DoF of ~8nm is shown to be obtainable for the 20nm half-pitch grating feature while the respective DoF for the two-slit feature is less than 8nm which potentially can be enhanced by employing existing lithographic resolution enhancement techniques.

© 2009 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(110.4235) Imaging systems : Nanolithography

ToC Category:
Imaging Systems

History
Original Manuscript: June 18, 2009
Revised Manuscript: October 3, 2009
Manuscript Accepted: October 4, 2009
Published: October 23, 2009

Citation
Zhong Shi, Vladimir Kochergin, and Fei Wang, "Depth-of-focus (DoF) analysis of a 193nm superlens imaging structure," Opt. Express 17, 20538-20545 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-22-20538


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  2. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000). [CrossRef] [PubMed]
  3. Z. Liu, N. Fang, T. Yen, and X. Zhang, “Rapid growth of evanescent wave by a silver superlens,” Appl. Phys. Lett. 83(25), 5184 (2003). [CrossRef]
  4. W. Cai, D. A. Genov, and V. M. Shalaev, “Superlens based on metal-dielectric composites,” Phys. Rev. B 72(19), 193101 (2005). [CrossRef]
  5. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005). [CrossRef] [PubMed]
  6. H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” N. J. Phys. 7, 255 (2005). [CrossRef]
  7. D. O. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13(6), 2127–2134 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-13-6-2127 . [CrossRef] [PubMed]
  8. Z. Shi, V. Kochergin, and F. Wang, “193nm Superlens imaging structure for 20nm lithography node,” Opt. Express 17(14), 11309–11314 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-14-11309 . [CrossRef] [PubMed]
  9. M. A. Meitl, Z. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, I. Adesida, R. G. Nuzzo, and J. A. Rogers, “Transfer printing by kinetic control of adhesion to an elatomeric stamp,” Nat. Mater. 5(1), 33–38 (2005). [CrossRef]
  10. A. K.-K. Wong, Resolution Enhancement Techniques in Optical Lithography (SPIE Publications, 2001).
  11. F. Wang and W. A. Stanton, “Reducing imaging defects in high-resolution photolithography,” J. Vac. Sci. Technol. B 26(1), L19 (2008). [CrossRef]
  12. D. Davazoglou, G. Pallis, V. Psycharis, M. Gioti, and S. Logothetidis, “Structure and optical properties of tungsten thin films deposited by pyrolysis of W(CO)6 at various temperatures,” J. Appl. Phys. 77(11), 6070 (1995). [CrossRef]
  13. H. J. Levinson, Principle of Optical Lithography (SPIE Press, 2005).
  14. E. D. Palik, Handbook of Optical Constants of Solids II (Academic Press, 1991).
  15. J. Zhou, N. Lafferty, B. W. Smith, and J. H. Burnett, “Immersion lithography with numerical apertures above 2.0 using high index optical materials,” Proc. SPIE 6520, 65204T (2007). [CrossRef]
  16. A. Lebib, Y. Chen, F. Carcenac, E. Cambril, L. Manin, L. Couraud, and H. Launois, “Tri-layer systems for nanoimprint lithography with an improved process latitude,” Microelectron. Eng. 53(1-4), 175–178 (2000). [CrossRef]
  17. S. Burns, M. Burkhardt, D. Goldfarb, N. Lustig, D. Pfeiffer, M. J. Brodsky, A. Clancy, and D. Medeiros, “Trilayer development for 193nm immersion lithography,” J. Photopolym. Sci. Technol. 20(5), 679–686 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited