OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 22 — Oct. 26, 2009
  • pp: 20553–20566

Extraordinary optical transmission through multi-layered systems of corrugated metallic thin films

Choon How Gan and Greg Gbur  »View Author Affiliations

Optics Express, Vol. 17, Issue 22, pp. 20553-20566 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (420 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical transmission through multi-layered systems of corrugated metallic thin films is investigated by rigorous electromagnetic simulations based on an exact Green tensor method. Compared to a single metal slab of equivalent thickness and volume, it was found that the multi-layered system can significantly impede the field decay, often leading to transmission greater than that expected from the Fabry-Perot resonance-like behavior exhibited by subwavelength slits in a single slab. Extraordinary optical transmission is also observable for systems of layers whose combined thicknesses are much greater than the skin depth of the metal. Structures consisting of up to five layers with a net thickness of 500 nm for the metal films were considered in our study. These findings demonstrate that an appreciable fraction of the optical power that is incident on the thin metal films can be transmitted over distances greater than their skin depth using plasmonic resonances.

© 2009 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(310.4165) Thin films : Multilayer design

ToC Category:
Diffraction and Gratings

Original Manuscript: July 22, 2009
Manuscript Accepted: September 23, 2009
Published: October 23, 2009

Choon How Gan and Greg Gbur, "Extraordinary optical transmission through multi-layered systems of corrugated metallic thin films," Opt. Express 17, 20553-20566 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998). [CrossRef]
  2. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plamsons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998). [CrossRef]
  3. D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, "Crucial role of metal surface in enhance transmission through subwavelength apertures," Appl. Phys. Lett. 77, 1569-1571 (2000). [CrossRef]
  4. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritions and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004). [CrossRef] [PubMed]
  5. H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra and E. R. Eliel, "Plasmon-assisted two-slit transmission: Young’s experiment revisited," Phys. Rev. Lett. 94, 053901 (2005). [CrossRef] [PubMed]
  6. P. Lalanne and J. P. Hugonin, "Interaction between optical nano-objects at metallo-dielectric interfaces," Nature Phys. 2, 551-556 (2006). [CrossRef]
  7. H. Liu and P. Lalanne, "Microscopic theory of the extraordinary optical transmission," Nature 452, 728-731 (2008). [CrossRef] [PubMed]
  8. Y. Ye and J. Zhang, "Enhanced light transmission through cascaded metal films perforated with periodic hole arrays," Opt. Lett. 30, 1521-1523 (2005). [CrossRef] [PubMed]
  9. B. Bai, L. Li, and L. Zeng, "Experimental verification of enhanced transmission through two-dimensionally corrugated metallic films without holes," Opt. Lett. 30, 2360-2362 (2005). [CrossRef] [PubMed]
  10. H. B. Chan, Z. Marcet, K. Woo, D. B. Tanner, D. W. Carr, J. E. Bower, R. A. Cirelli, E. Ferry E, F. Klemens, J. Miner, C. S. Pai, and J. A. Taylor, "Optical transmission through double-layer metallic subwavelength slit arrays," Opt. Lett. 31, 516-518 (2006). [CrossRef] [PubMed]
  11. C. Cheng, J. Chen, Q. Wu, F. Ren, J. Xu, Y. Fan, and H. Wang, "Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits," Appl. Phys. Lett. 91, 111111 (2007). [CrossRef]
  12. R. M. Bakker, V. P. Drachev, H. K. Yuan, and V. M. Shalaev, "Enhanced transmission in near-field imaging of layered plasmonic structures," Opt. Express 12, 3701-3706 (2004). [CrossRef] [PubMed]
  13. Z. Marcet, J. W. Paster, D. W. Carr, J. E. Bower, R. A. Cirelli, F. Klemens, W. M. Mansfield, J. F. Miner, C. S. Pai, and H. B. Chan (2008) "Controlling the phase delay of light transmitted through double-layer metallic subwavelength slit arrays," Opt. Lett. 33, 1410-1412 (2008). [CrossRef] [PubMed]
  14. S. Astilean, P. Lalanne, and M. Palamaru "Light transmission through metallic channels much smaller than the wavelength," Opt. Commun. 175, 265-273 (2000). [CrossRef]
  15. Y. Takakura, "Optical resonance in a narrow slit in a thick metallic screen," Phys. Rev. Lett. 86, 5601-5603 (2001). [CrossRef] [PubMed]
  16. F. Yang and J. R. Sambles, "Resonant transmission of microwaves through a narrow metallic slit," Phys. Rev. Lett. 89, 063901 (2002). [CrossRef] [PubMed]
  17. C. H. Gan and G. Gbur, "Strategies for employing surface plasmons in a near field transmission optical readout system," Appl. Phys. Lett. 91, 131109 (2007). [CrossRef]
  18. C. H. Gan and G. Gbur, "Strategies for employing surface plasmons in near-field optical readout systems," Opt. Exp. 14, 2385-2397 (2006). [CrossRef]
  19. G. Gbur, H. F. Schouten and T. D. Visser, "Achieving superresolution in near-field optical data readout systems using surface plasmons," Appl. Phys. Lett. 87, 191109 (2005). [CrossRef]
  20. A. Degiron and T. W. Ebbesen, "Analysis of the transmission process through single apertures surrounded by periodic corrugations," Opt. Express 12, 3694-3700 (2004). [CrossRef] [PubMed]
  21. H.J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2001). [CrossRef]
  22. M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and A. S. Manka, "Transparent, metallodielectric, one-dimensional, photonic band-gap structures," J. Appl. Phys. 72, 2377-2383 (1998). [CrossRef]
  23. M. J. Bloemer and M. Scalora, "Transmissive properties of Ag/MgF2 photonic band gaps," Appl. Phys. Lett. 83, 1676-1678 (1998). [CrossRef]
  24. S. Feng, J. M. Elson, and P. L. Overfelt, "Optical properties of multilayer metal-dielectric nanofilms with allevanescent modes," Opt. Express 13, 4113-4124 (2005). [CrossRef] [PubMed]
  25. F. García-Vidal, H. J. Lezec, T.W. Ebbesen, and L. Martín-Moreno, "Multiple paths to enhance optical transmission through a single subwavelength slit," Phys. Rev. Lett. 90, 213901 (2003). [CrossRef] [PubMed]
  26. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003). [CrossRef] [PubMed]
  27. J. W. Goodman (2005) Introduction to Fourier Optics, Roberts & Company, Englewood, 3rd edition.
  28. P. B. Johnson, and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  29. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114- 1117 (2001). [CrossRef] [PubMed]
  30. N , Bonod, S. Enoch, L. Li, E. Popov, M. Neviére, "Resonant optical transmission through thin metallic films with and without holes," Opt. Express 11, 482-490 (2003). [CrossRef] [PubMed]
  31. S. A. Darmanyan and A. V. Zayats, "Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: An analytical study," Phys. Rev. B 67, 035424 (2003). [CrossRef]
  32. A. Giannattasio, I. R. Hooper, and W. L. Barnes, "Transmission of light through thin silver films via surface plasmon polaritons," Opt. Express 12, 5881-5886 (2004). [CrossRef] [PubMed]
  33. T. D. Visser, H. Blok, and D. Lenstra, "Theory of polarization-dependent amplification in a slab waveguide with anisotropic gain and losses," IEEE J. Quantum Electron. 35, 240-249 (1999). [CrossRef]
  34. E. Palik (1985) Handbook of Optical Constants of Solids, Academic Press, New York.
  35. N. N. Rao(2004) Elements of Engineering Electromagnetics, Prentice Hall, New Jersey, 6th edition.
  36. D. K. Cheng (1994) Fundamentals of Engineering Electromagnetics, Addison-Wesley, Massachusetts.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited