OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 22 — Oct. 26, 2009
  • pp: 20567–20574

Coherent transfer of orbital angular momentum to excitons by optical four-wave mixing

Y. Ueno, Y. Toda, S. Adachi, R. Morita, and T. Tawara  »View Author Affiliations

Optics Express, Vol. 17, Issue 22, pp. 20567-20574 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (505 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the coherent transfer of optical orbital angular momentum (OAM) to the center of mass momentum of excitons in semiconductor GaN using a four-wave mixing (FWM) process. When we apply the optical vortex (OV) as an excitation pulse, the diffracted FWM signal exhibits phase singularities that satisfy the OAM conservation law, which remain clear within the exciton dephasing time (~1ps). We also demonstrate the arbitrary control of the topological charge in the output signal by changing the OAM of the input pulse. The results provide a way of controlling the optical OAM through carriers in solids. Moreover, the time evolution of the FWM with OAM leads to the study of the closed-loop carrier coherence in materials.

© 2009 Optical Society of America

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(300.6240) Spectroscopy : Spectroscopy, coherent transient
(300.6290) Spectroscopy : Spectroscopy, four-wave mixing
(050.4865) Diffraction and gratings : Optical vortices

ToC Category:
Physical Optics

Original Manuscript: July 27, 2009
Revised Manuscript: September 11, 2009
Manuscript Accepted: September 12, 2009
Published: October 23, 2009

Y. Ueno, Y. Toda, S. Adachi, R. Morita, and T. Tawara, "Coherent transfer of orbital angular momentum to excitons by optical four-wave mixing," Opt. Express 17, 20567-20574 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. T. Gahagan and G. A. Swartzlander, Jr., "Optical vortex trapping of particles," Opt. Lett. 21, 827-829 (1996). [CrossRef] [PubMed]
  2. H. J. Metcalf and P. van der Straten, "Laser cooling and trapping of atoms," J. Opt. Soc. Am. B 20, 887-908 (2003). [CrossRef]
  3. M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, "Quantized Rotation of Atoms from Photons with Orbital Angular Momentum," Phys. Rev. Lett. 97, 170406-1-4 (2006) [CrossRef]
  4. D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003). [CrossRef] [PubMed]
  5. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes," Phys. Rev. A 45, 8185-8189 (1992). [CrossRef] [PubMed]
  6. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, "Entanglement of the orbital angular momentum states of photons," Nature 412, 313-316 (2001). [CrossRef] [PubMed]
  7. R. Cêelechovský and Z. Bouchal, "Optical implementation of the vortex information channel," New. J. Phys. 9, 328 (2007). [CrossRef]
  8. G. Molina-Terriza, J. P. Torres, L. Torner, "Twisted photons," Nature Phys. 3, 305-310 (2007). [CrossRef]
  9. L. Torner, J. P. Torres, S. Carrasco, "Digital spiral imaging," Opt. Express 13, 873-81 (2005). [CrossRef] [PubMed]
  10. G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pasfko, S. M. Barnett, S. Franke-Arnold, "Free-space information transfer using light beams carrying orbital angular momentum," Opt. Express 12, 5448-5456 (2004). [CrossRef] [PubMed]
  11. W. Jiang, Q. Chen, Y. Zhang, and G.-C. Guo, "Computation of topological charges of optical vortices via nondegenerate four-wave mixing," Phys. Rev. A 74, 043811-1-4 (2006). [CrossRef]
  12. D. Sanvitto, F. M. Marchetti, M. H. Szymanska, G. Tosi, M. Baudisch, F. P. Laussy, D. N. Krizhanovskii, M. S. Skolnick, L. Marrucci, A. Lemaitre, J. Bloch, C. Tejedor and L. Vina, "Persistent currents and quantised vortices in a polariton superfluid," cond-mat, arXiv:0907.2371 (2009).
  13. S. Tanda, T. Tsuneta, Y. Okajima, K. Inagaki, K. Yamaya, N. Hatakenaka, "Crystal topology: A Möbius strip of single crystals," Nature 417, 397-398 (2002). [CrossRef] [PubMed]
  14. A. Lorke, R. J. Luyken, A. O. Govorov, J. P. Kotthaus, J. M Garcia, and P. M. Petroff, "Spectroscopy of Nanoscopic Semiconductor Rings," Phys. Rev. Lett. 84, 2223-2226 (2000). [CrossRef] [PubMed]
  15. J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures (Springer-Verlag, New York, 1998).
  16. I. G. Mariyenko, J. Strohaber, and C. J. G. J. Uiterwaal, "Creation of optical vortices in femtosecond pulses," Opt. Express 13, 7599-7608 (2005). [CrossRef] [PubMed]
  17. T. Ishiguro, Y. Toda, S. Adachi, T. Mukai, K. Hoshino, and Y. Arakawa, "Degenerate four-wave mixing spectroscopy of GaN films on various substrates," Phys. Stat. Sol.(b) 243, 1560-1563 (2006). [CrossRef]
  18. I. V. Basistiy, V. Y. Bazhenov, M. S. Soskin and M. V. Vasnetsov, "Optics of light beams with screw dislocations," Opt. Commun. 103, 422-428 (1993). [CrossRef]
  19. L. Allen, M. J. Padgett, and M. Babiker, "The orbital angular momentum of light," Prog. Opt. 39, 291-372 (1999). [CrossRef]
  20. A. Dreischuh, D. N. Neshev, V. Z. Kolev, S. Saltiel, M. Samoc, W. Krolikowski, and Y. S. Kivshar, "Nonlinear dynamics of two-color optical vortices in lithium niobate crystals," Opt. Express 16, 5406-5420 (2008). [CrossRef] [PubMed]
  21. T. Aoki, G. Mohs, T. Ogasawara, R. Shimano, and M. Kuwata-Gonokam, "Polarization dependent quantum beats of homogeneously broadened excitons," Opt. Express 12, 364-369 (1997). [CrossRef]
  22. O. Moriwaki, T. Someya, K. Tachibana, S. Ishida, Y. Arakawa, "Narrow photoluminescence peaks from localized states in InGaN quantum dot structures," Appl. Phys. Lett. 76, 2361-2363 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited