OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 23 — Nov. 9, 2009
  • pp: 20651–20660

Tilted fiber grating accelerometer incorporating an abrupt biconical taper for cladding to core recoupling

Tuan Guo, Liyang Shao, Hwa-Yaw Tam, Peter A. Krug, and Jacques Albert  »View Author Affiliations


Optics Express, Vol. 17, Issue 23, pp. 20651-20660 (2009)
http://dx.doi.org/10.1364/OE.17.020651


View Full Text Article

Enhanced HTML    Acrobat PDF (712 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a compact power-referenced fiber-optic accelerometer using a weakly tilted fiber Bragg grating (TFBG) combined with an abrupt biconical taper. The electric-arc-heating induced taper is located a short distance upstream from the TFBG and functions as a bridge to recouple the TFBG-excited lower-order cladding modes back into the fiber core. This recoupling is extremely sensitive to microbending. We avoid complex wavelength interrogation by simply monitoring power change in reflection, which we show to be proportional to acceleration. In addition, the Bragg resonance is virtually unaffected by fiber bending and can be used as a power reference to cancel out any light source fluctuations. The proposed sensing configuration provides a constant linear response (nonlinearity < 1%) over a vibration frequency range from DC to 250 Hz. The upper vibration frequency limit of measurement is determined by mechanical resonance, and can be tuned by varying the sensor length. The tip-reflection sensing feature enables the sensor head to be made small enough (20~100 mm in length and 2 mm in diameter) for embedded detection. The polymer-tube-package makes the sensor sufficiently stiff for in-field acceleration measurement.

© 2009 OSA

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2370) Fiber optics and optical communications : Fiber optics sensors

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: September 17, 2009
Revised Manuscript: October 14, 2009
Manuscript Accepted: October 17, 2009
Published: October 26, 2009

Citation
Tuan Guo, Liyang Shao, Hwa-Yaw Tam, Peter A. Krug, and Jacques Albert, "Tilted fiber grating accelerometer incorporating an abrupt biconical taper for cladding to core recoupling," Opt. Express 17, 20651-20660 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-23-20651


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. S. Gerges, T. P. Newson, J. D. C. Jones, and D. A. Jackson, “High-sensitivity fiber-optic accelerometer,” Opt. Lett. 14(4), 251–253 (1989). [CrossRef] [PubMed]
  2. S. T. Vohra, B. Danver, A. Tveten, and A. Dandridge, “High performance fibre optic accelerometers,” Electron. Lett. 33(2), 155–157 (1997). [CrossRef]
  3. C. Doyle and G. F. Fernando, “Two-axis optical fiber accelerometer,” Meas. Sci. Technol. 19, 959–961 (2000).
  4. G. A. Cranch and P. J. Nash, “High-responsivity fiber-optic flexural disk accelerometers,” J. Lightwave Technol. 18(9), 1233–1243 (2000). [CrossRef]
  5. Y. J. Wang, H. Xiao, S. W. Zhang, F. Li, and Y. L. Liu, “Design of a fibre-optic disc accelerometer: theory and experiment,” Meas. Sci. Technol. 18(6), 1763–1767 (2007). [CrossRef]
  6. T. A. Berkoff and A. D. Kersey, “Experimental demonstration of a fiber Bragg grating accelerometer,” IEEE Photon. Technol. Lett. 8(12), 1677–1679 (1996). [CrossRef]
  7. M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, “Flexural beam-based fiber Bragg grating accelerometers,” IEEE Photon. Technol. Lett. 10(11), 1605–1607 (1998). [CrossRef]
  8. T. K. Gangopadhyay, “Prospects for fibre Bragg gratings and fabry-perot interferometers in fibre-optic vibration sensing,” Sens. Actuators A Phys. 113(1), 20–38 (2004). [CrossRef]
  9. A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. F. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008). [CrossRef]
  10. Y. N. Zhu, P. Shum, C. Lu, M. B. Lacquet, P. L. Swart, and S. J. Spammer, “Temperature-insensitive fiber Bragg grating accelerometer,” IEEE Photon. Technol. Lett. 15(10), 1437–1439 (2003). [CrossRef]
  11. R. Romero, O. Frazão, D. A. Pereira, H. M. Salgado, F. M. Araújo, and L. A. Ferreira, “Intensity-referenced and temperature-independent curvature-sensing concept based on chirped fiber Bragg gratings,” Appl. Opt. 44(18), 3821–3826 (2005). [CrossRef] [PubMed]
  12. T. Guo, Q. D. Zhao, H. Zhang, C. S. Zhang, G. L. Huang, L. F. Xue, and X. Y. Dong, “Temperature-insensitive fiber Bragg grating dynamic pressure sensing system,” Opt. Lett. 31(15), 2269–2271 (2006). [CrossRef] [PubMed]
  13. T. Guo, A. Ivanov, C. Chen, and J. Albert, “Temperature-independent tilted fiber grating vibration sensor based on cladding-core recoupling,” Opt. Lett. 33(9), 1004–1006 (2008). [CrossRef] [PubMed]
  14. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices Part 1: Adiabaticity criteria,” IEE Proc.J. Optoelectron. 138, 343–354 (1991). [CrossRef]
  15. R. J. Black, S. Lacroix, F. Gonthier, and J. D. Love, “Tapered single-mode fibres and devices Part 2: Experimental and theoretical quantification,” IEE Proc.J. Optoelectron. 138, 355–364 (1991). [CrossRef]
  16. E. C. Mägi, P. Steinvurzel, and B. J. Eggleton, “Tapered photonic crystal fibers,” Opt. Express 12(5), 776–784 (2004). [CrossRef] [PubMed]
  17. H. C. Nguyen, B. T. Kuhlmey, E. C. Magi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibres: properties, characterisation and applications,” Appl. Phys. B 81(2-3), 377–387 (2005). [CrossRef]
  18. S. Laflamme, S. Lacroix, J. Bures, and X. Daxhelet, “Understanding power leakage in tapered solid core microstructured fibers,” Opt. Express 15(2), 387–396 (2007). [CrossRef] [PubMed]
  19. A. J. Fielding, K. Edinger, and C. C. Davis, “Experimental observation of mode evolution in single-mode tapered optical fibers,” J. Lightwave Technol. 17(9), 1649–1656 (1999). [CrossRef]
  20. O. Frazão, R. Falate, J. L. Fabris, J. L. Santos, L. A. Ferreira, and F. M. Araújo, “Optical inclinometer based on a single long-period fiber grating combined with a fused taper,” Opt. Lett. 31(20), 2960–2962 (2006). [CrossRef] [PubMed]
  21. O. Frazão, P. Caldas, F. M. Araújo, L. A. Ferreira, and J. L. Santos, “Optical flowmeter using a modal interferometer based on a single nonadiabatic fiber taper,” Opt. Lett. 32(14), 1974–1976 (2007). [CrossRef] [PubMed]
  22. Z. B. Tian, S. S. Yam, and H. P. Loock, “Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber,” Opt. Lett. 33(10), 1105–1107 (2008). [CrossRef] [PubMed]
  23. D. Monzón-Hernández, V. P. Minkovich, J. Villatoro, M. P. Kreuzer, and G. Badenes, “Photonic crystal fiber microtaper supporting two selective higher-order modes with high sensitivity to gas molecules,” Appl. Phys. Lett. 93(8), 081106 (2008). [CrossRef]
  24. J. Ju, L. Ma, W. Jin, and Y. M. Hu, “Photonic bandgap fiber tapers and in-fiber interferometric sensors,” Opt. Lett. 34(12), 1861–1863 (2009). [CrossRef] [PubMed]
  25. R. T. Schermer, “Mode scalability in bent optical fibers,” Opt. Express 15(24), 15674–15701 (2007). [CrossRef] [PubMed]
  26. C. F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt. 46(7), 1142–1149 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited