OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 23 — Nov. 9, 2009
  • pp: 20675–20683

A terahertz plastic wire based evanescent field sensor for high sensitivity liquid detection

Borwen You, Tze-An Liu, Jin-Long Peng, Ci-Ling Pan, and Ja-Yu Lu  »View Author Affiliations


Optics Express, Vol. 17, Issue 23, pp. 20675-20683 (2009)
http://dx.doi.org/10.1364/OE.17.020675


View Full Text Article

Enhanced HTML    Acrobat PDF (365 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A highly sensitive detection method based on the evanescent wave of a terahertz subwavelength plastic wire was demonstrated for liquid sensing. Terahertz power spreading outside the wire core makes the waveguide dispersion sensitive to the cladding index variation, resulting in a considerable deviation of waveguide dispersion. Two liquids with transparent appearances, water and alcohol, are easily distinguished based on the waveguide dispersion, which is consistent with theoretical predictions. A melamine alcohol solution with various concentrations is identified successfully, and the detection limit is up to 20ppm, i.e. equivalent to the index variation on the order of 0.01.

© 2009 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(130.6010) Integrated optics : Sensors
(230.7370) Optical devices : Waveguides
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Sensors

History
Original Manuscript: September 24, 2009
Revised Manuscript: October 23, 2009
Manuscript Accepted: October 23, 2009
Published: October 27, 2009

Citation
Borwen You, Tze-An Liu, Jin-Long Peng, Ci-Ling Pan, and Ja-Yu Lu, "A terahertz plastic wire based evanescent field sensor for high sensitivity liquid detection," Opt. Express 17, 20675-20683 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-23-20675


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Cheng, H. Shin'ichiro, A. Dobroiu, C. Otani, K. Kawase, T. Miyazawa, and Y. Ogawa, “Terahertz-wave absorption in liquids measured using the evanescent field of a silicon waveguide,” Appl. Phys. Lett. 92(18), 181104 (2008). [CrossRef]
  2. M. Walther, M. R. Freeman, and F. A. Hegmann, “Metal-wire terahertz time-domain spectroscopy,” Appl. Phys. Lett. 87(26), 261107 (2005). [CrossRef]
  3. Y. Sun, X. Xia, H. Feng, H. Yang, C. Gu, and L. Wang, “Modulated terahertz responses of split ring resonators by nanometer thick liquid layers,” Appl. Phys. Lett. 92(22), 221101 (2008). [CrossRef]
  4. A. Ibraheem, I. Al-Naib, C. Jansen, and M. Koch, “Thin-film sensing with planar asymmetric metamaterial resonators,” Appl. Phys. Lett. 93, 083507 (2008). [CrossRef]
  5. J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16(3), 1786–1795 (2008). [CrossRef] [PubMed]
  6. H. Kur, “Coupled-resonator optical waveguides for biochemical sensing of nanoliter volumes of analyte in the terahertz region,” Appl. Phys. Lett. 87(24), 241119 (2005). [CrossRef]
  7. F. Miyamaru, S. Hayashi, C. Otani, K. Kawase, Y. Ogawa, H. Yoshida, and E. Kato, “Terahertz surface-wave resonant sensor with a metal hole array,” Opt. Lett. 31(8), 1118–1120 (2006). [CrossRef] [PubMed]
  8. H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91(25), 253901 (2007). [CrossRef]
  9. S. Yoshida, E. Kato, K. Suizu, Y. Nakagomi, Y. Ogawa, and K. Kawase, “Terahertz sensing of thin poly(ethylene terephthalate) film thickness using a metallic mesh,” Appl. Phys. Express 2, 012301 (2009). [CrossRef]
  10. M. Nagel, P. Haring Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Bu¨ttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80(1), 154–156 (2002). [CrossRef]
  11. A. Chakraborty and N. Guchhait, “Inclusion complex of charge transfer probe 4-amino-3-methyl benzoic acid methyl ester (AMBME) with b-CD in aqueous and non-aqueous medium: medium dependent stoichiometry of the complex and orientation of probe molecule inside b-CD nanocavity,” J. Incl. Phenom. Macrocycl. Chem. 62(1-2), 91–97 (2008). [CrossRef]
  12. N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid Nanofluid 4(1-2), 117–127 (2008). [CrossRef]
  13. L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31(3), 308–310 (2006). [CrossRef] [PubMed]
  14. A. Dupuis, J.-F. Allard, D. Morris, K. Stoeffler, C. Dubois, and M. Skorobogatiy, “Fabrication and THz loss measurements of porous subwavelength fibers using a directional coupler method,” Opt. Express 17(10), 8012–8028 (2009). [CrossRef] [PubMed]
  15. J.-Y. Lu, C.-M. Chiu, C.-C. Kuo, C.-H. Lai, H.-C. Chang, Y.-J. Hwang, C.-L. Pan, and C.-K. Sun, “Terahertz scanning imaging with a subwavelength plastic fiber,” Appl. Phys. Lett. 92(8), 084102 (2008). [CrossRef]
  16. C.-M. Chiu, H.-W. Chen, Y.-R. Huang, Y.-J. Hwang, W.-J. Lee, H.-Y. Huang, and C.-K. Sun, “All-terahertz fiber-scanning near-field microscopy,” Opt. Lett. 34(7), 1084–1086 (2009). [CrossRef] [PubMed]
  17. L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004). [CrossRef] [PubMed]
  18. J. W. Lamb, “Miscellancous data on materials for millimetre and submillimetre optics,” Int. J. Infrared. Milli. 17, 1996–2034 (1996).
  19. J. Lou, L. Tong, and Z. Ye, “Modeling of silica nanowires for optical sensing,” Opt. Express 13(6), 2135–2140 (2005). [CrossRef] [PubMed]
  20. H.-W. Chen, Y.-T. Li, C.-L. Pan, J.-L. Kuo, J.-Y. Lu, L.-J. Chen, and C.-K. Sun, “Investigation on spectral loss characteristics of subwavelength terahertz fibers,” Opt. Lett. 32(9), 1017–1019 (2007). [CrossRef] [PubMed]
  21. B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002). [CrossRef] [PubMed]
  22. H. Kitahara, T. Yagi, K. Mano, and M. W. Takeda, “Dielectric characteristics of water solutions of ethanol in the terahertz region,” J. Korean Phys. Soc. 46, 82–85 (2005).
  23. L. Thrane, R. H. Jacobsen, P. Uhd Jepsen, and S. R. Keiding, “THz reflection spectroscopy of liquid water,” Chem. Phys. Lett. 240(4), 330–333 (1995). [CrossRef]
  24. B. E. A. Saleh, and M. C. Teich, fundamentals of photonics (John Wiley & Sons, New York, NY 1991).
  25. J. Lou, L. Tong, and Z. Ye, “Dispersion shifts in optical nanowires with thin dielectric coatings,” Opt. Express 14(16), 6993–6998 (2006). [CrossRef] [PubMed]
  26. C.-L. Chen, elements of optoelectronics and fiber optics, chap.8 (Times Mirror Higher Education Group, Inc. company, 1996).
  27. A. Sano, Kawasaki, T. Kuroishi, Chiba, Y. Miyazaki, Machida, S. Yokoyama, Yokohama, K. Matsuura, “Easily soluble polyethylene powder for the preparation of fibers or films having high strength and high elastic modulus,” united states patent 4760120 (1988). http://www.freepatentsonline.com/4760120.pdf
  28. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, “Some chemicals that cause tumours of the kidney or urinary bladder in rodents, and some other substances”. http://monographs.iarc.fr/ENG/Monographs/vol73/index.php
  29. R. E. N. Baozeng, L. I. Chen, Y. U. A. N. Xiaoliang, and W. A. N. G. Fu'an, “Determination and correlation of melamine solubility,” Chin. J. Chem. Eng. 54(7), 1001–1003 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited