OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 23 — Nov. 9, 2009
  • pp: 20806–20815

An explicit formula for metal wire plasmon of terahertz wave

Jie Yang, Qing Cao, and Changhe Zhou  »View Author Affiliations


Optics Express, Vol. 17, Issue 23, pp. 20806-20815 (2009)
http://dx.doi.org/10.1364/OE.17.020806


View Full Text Article

Acrobat PDF (890 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An explicit formula for metal wire plasmon of terahertz wave is analytically derived. The derivation is based on the huge relative permittivities of nonmagnetic metals in the spectral region of terahertz wave, some important properties of modified Bessel functions, and a suitable Taylor expansion. The obtained formula is further checked by many numerical tests. We find that, for all 11 tested nonmagnetic metals, for the whole spectral region of terahertz wave, and for the wide radius range from 10 μm to infinity, the relative deviation for the effective index is always smaller than 5%. This good agreement clearly shows that the derived expression can be conveniently used for the analysis and design of metal wire plasmon of terahertz wave.

© 2009 OSA

OCIS Codes
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(260.3090) Physical optics : Infrared, far
(260.3910) Physical optics : Metal optics

ToC Category:
Optics at Surfaces

History
Original Manuscript: September 10, 2009
Revised Manuscript: October 13, 2009
Manuscript Accepted: October 13, 2009
Published: October 29, 2009

Citation
Jie Yang, Qing Cao, and Changhe Zhou, "An explicit formula for metal wire plasmon of terahertz wave," Opt. Express 17, 20806-20815 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-23-20806


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20(16), 1716–1718 (1995). [CrossRef]
  2. A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321 (1996). [CrossRef]
  3. M. J. Fitch and R. Osiander, “Terahertz waves for communications and sensing,” Johns Hopkins APL Tech. Dig. 25, 348–355 (2004).
  4. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004). [CrossRef]
  5. Q. Cao and J. Jahns, “Azimuthally polarized surface plasmons as effective terahertz waveguides,” Opt. Express 13(2), 511–518 (2005). [CrossRef]
  6. M. Walther, M. R. Freeman, and F. A. Hegmann, “Metal-wire terahertz time-domain spectroscopy,” Appl. Phys. Lett. 87(26), 261107 (2005). [CrossRef]
  7. T.-I. Jeon, J.-Q. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86(16), 161904 (2005). [CrossRef]
  8. H. Cao and A. Nahata, “Coupling of terahertz pulses onto a single metal wire waveguide using milled grooves,” Opt. Express 13(18), 7028–7034 (2005). [CrossRef]
  9. M. Wächter, M. Nagel, and H. Kurz, “Frequency-dependent characterization of THz Sommerfeld wave propagation on single-wires,” Opt. Express 13(26), 10815–10822 (2005). [CrossRef]
  10. K. Wang and D. M. Mittleman, “Guided propagation of terahertz pulses on metal wires,” J. Opt. Soc. Am. B 22(9), 2001–2008 (2005). [CrossRef]
  11. K. Wang and D. M. Mittleman, “Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range,” Phys. Rev. Lett. 96(15), 157401 (2006). [CrossRef]
  12. J. A. Deibel, K. Wang, M. D. Escarra, and D. M. Mittleman, “Enhanced coupling of terahertz radiation to cylindrical wire waveguides,” Opt. Express 14(1), 279–290 (2006). [CrossRef]
  13. J. A. Deibel, N. Berndsen, K. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, “Frequency-dependent radiation patterns emitted by THz plasmons on finite length cylindrical metal wires,” Opt. Express 14(19), 8772–8778 (2006). [CrossRef]
  14. Y. Chen, Z. Song, Y. Li, M. Hu, Q. Xing, Z. Zhang, L. Chai, and C. Y. Wang, “Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves,” Opt. Express 14(26), 13021–13029 (2006). [CrossRef]
  15. C. Themistos, B. M. Azizur Rahman, M. Rajarajan, V. Rakocevic, and K. T. V. Grattan, “Finite Element Solutions of Surface-Plasmon Modes in Metal-Clad Dielectric Waveguides at THz Frequency,” J. Lightwave Technol. 24(12), 5111–5118 (2006). [CrossRef]
  16. X. He, J. Cao, and S. Feng, “Simulation of the Propagation Property of Metal Wires Terahertz Waveguides,” Chin. Phys. Lett. 23(8), 2066–2069 (2006). [CrossRef]
  17. J. A. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. M. Mittleman, “Finite-Element Method Simulations of Guided Wave Phenomena at Terahertz Frequencies,” Proc. IEEE 95(8), 1624–1640 (2007). [CrossRef]
  18. H. Liang, S. Ruan, and M. Zhang, “Terahertz surface wave propagation and focusing on conical metal wires,” Opt. Express 16(22), 18241–18248 (2008). [CrossRef]
  19. Y. B. Ji, E. S. Lee, J. S. Jang, and T.-I. Jeon, “Enhancement of the detection of THz Sommerfeld wave using a conical wire waveguide,” Opt. Express 16(1), 271–278 (2008). [CrossRef]
  20. P. W. Smorenburg, W. P. E. M. Op ‘t Root, and O. J Luiten, “Direct generation of terahertz surface plasmon polaritons on a wire using electron bunches’,” Phys. Rev. B 78(11), 115415 (2008). [CrossRef]
  21. J. A. Deibel, K. Wang, M. Escarra, N. Berndsen, and D. M. Mittleman, “The excitation and emission of terahertz surface plasmon polaritons on metal wire waveguides,” C. R. Phys. 9(2), 215–231 (2008). [CrossRef]
  22. S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76(15), 1987 (2000). [CrossRef]
  23. H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634 (2002). [CrossRef]
  24. J. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12(21), 5263–5268 (2004). [CrossRef]
  25. L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31(3), 308–310 (2006). [CrossRef]
  26. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express 16(9), 6340–6351 (2008). [CrossRef]
  27. G. Ren, Y. Gong, P. Shum, X. Yu, J. Hu, G. Wang, M. Ong Ling Chuen, and V. Paulose, “Low-loss air-core polarization maintaining terahertz fiber,” Opt. Express 16(18), 13593–13598 (2008). [CrossRef]
  28. S. Atakaramians, S. Afshar V, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: a novel approach to low loss THz waveguides,” Opt. Express 16(12), 8845–8854 (2008). [CrossRef]
  29. R. W. McGowan, G. Gallot, and D. Grischkowsky, “Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides,” Opt. Lett. 24(20), 1431–1433 (1999). [CrossRef]
  30. R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys. 88(7), 4449 (2000). [CrossRef]
  31. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17(5), 851–863 (2000). [CrossRef]
  32. W. Shi and Y. J. Ding, “Designs of terahertz waveguides for efficient parametric terahertz generation,” Appl. Phys. Lett. 82(25), 4435 (2003). [CrossRef]
  33. M. Nagel, A. Marchewka, and H. Kurz, “Low-index discontinuity terahertz waveguides,” Opt. Express 14(21), 9944–9954 (2006). [CrossRef]
  34. M. Wächter, M. Nagel, H. Kurz, M. L. Nagel, and H Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90(6), 061111 (2007). [CrossRef]
  35. A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength terahertz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102(4), 043904 (2009). [CrossRef]
  36. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Springer, Berlin, 1988).
  37. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004). [CrossRef]
  38. U. Schröter and A. Dereux, “Surface plasmon polaritons on metal cylinders with dielectric core,” Phys. Rev. B 64(12), 125420 (2001). [CrossRef]
  39. M. Born, and E. Wolf, Principles of Optics, 5th ed. (Pergamon Press, Oxford, 1975).
  40. M. A. Ordal, R. J. Bell, R. W. Alexander Jr, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt. 24(24), 4493–4499 (1985). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited