OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 23 — Nov. 9, 2009
  • pp: 20824–20832

Manipulative depolarization and reflectance spectra of morphologically controlled nano-pillars and nano-rods

Gong-Ru Lin, Fan-Shuen Meng, Yi-Hao Pai, Yia-Chung Chang, and Shih-Hsin Hsu  »View Author Affiliations


Optics Express, Vol. 17, Issue 23, pp. 20824-20832 (2009)
http://dx.doi.org/10.1364/OE.17.020824


View Full Text Article

Enhanced HTML    Acrobat PDF (406 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Depolarization of sub-μm-high Si nano-pillar/nano-rod surface reflectance with morphologically controlled anti-reflection spectrum is demonstrated. Extremely small reflectance dip of 1.5% at 400-450 nm for Si nano-pillars is extraordinary when comparing with Si nano-rods, in which the reflectance vs. L/λ for Si nano-pillars coincides well with the graded-index multilayer based modeling spectrum. Alternatively, Si nano-rods preserve its flattened reflectance spectrum up to 1700 nm, whereas the Si nano-pillar surface reflectance monotonically increases to approach that of bulk Si. The destructive interference is only induced on Si nano-pillar surface with larger aspect-ratio ≥15 and small sidewall slope <7 to suppress surface reflectance at blue-green wavelength region. Anomalous depolarization observed from disordered Si nano-pillar/nano-rod surface reflection indicates that TM-mode incidence interacts with more bound electrons than TE-mode to preserve its effective dielectric permittivity less deviated from the bulk Si. The degraded depolarization ratio observed under TE-mode incidence which correlates well with a simplified bounded-electron resonance model is elucidated.

© 2009 OSA

OCIS Codes
(160.4760) Materials : Optical properties
(240.5770) Optics at surfaces : Roughness
(160.4236) Materials : Nanomaterials

ToC Category:
Materials

History
Original Manuscript: July 8, 2009
Revised Manuscript: August 16, 2009
Manuscript Accepted: August 17, 2009
Published: October 29, 2009

Citation
Gong-Ru Lin, Fan-Shuen Meng, Yi-Hao Pai, Yia-Chung Chang, and Shih-Hsin Hsu, "Manipulative depolarization and reflectance spectra of morphologically controlled nano-pillars and nano-rods," Opt. Express 17, 20824-20832 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-23-20824


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. B. F. Martinson, J. W. Elam, J. T. Hupp, and M. J. Pellin, “ZnO nanotube based dye-sensitized solar cells,” Nano Lett. 7(8), 2183–2187 (2007). [CrossRef] [PubMed]
  2. Y. B. Tang, Z. H. Chen, H. S. Song, C. S. Lee, H. T. Cong, H. M. Cheng, W. J. Zhang, I. Bello, and S. T. Lee, “Vertically aligned p-type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells,” Nano Lett. 8(12), 4191–4195 (2008). [CrossRef] [PubMed]
  3. S. H. Hsu, E. S. Liu, Y. C. Chang, J. N. Hilfiker, Y. D. Kim, T. J. Kim, C. J. Lin, and G.-R. Lin, “Characterization of Si nanorods by spectroscopic ellipsometry with efficient theoretical modeling,” Phys. Status Solidi A-Appl. Mat. 205, 876–879 (2008). [CrossRef]
  4. K. Q. Peng, Y. Xu, Y. Wu, Y. J. Yan, S. T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1(11), 1062–1067 (2005). [CrossRef] [PubMed]
  5. H. J. Xu and X. J. Li, “Silicon nanoporous pillar array: a silicon hierarchical structure with high light absorption and triple-band photoluminescence,” Opt. Express 16(5), 2933–2941 (2008). [CrossRef] [PubMed]
  6. C. H. Hsu, H. C. Lo, C. F. Chen, C. T. Wu, J. S. Hwang, D. Das, J. Tsai, L. C. Chen, and K. H. Chen, “Generally applicable aelf-masked dry etching technique for nanotip array fabrication,” Nano Lett. 4(3), 471–475 (2004). [CrossRef]
  7. Y. H. Pai, F. S. Meng, C. J. Lin, H. C. Kuo, S. H. Hsu, Y. C. Chang, and G.-R. Lin, “Aspect-ratio-dependent ultra-low reflection and luminescence of dry-etched Si nanopillars on Si substrate,” Nanotech. 20(3), 035303 (2009). [CrossRef]
  8. G.-R. Lin, Y. C. Chang, E. S. Liu, H. C. Kuo, and H. S. Lin, “Low refractive index Si nanopillars on Si substrate,” Appl. Phys. Lett. 90(18), 181923 (2007). [CrossRef]
  9. W. H. Lowdermilk and D. Milam, “Graded-index antireflection surfaces for high-power laser applications,” Appl. Phys. Lett. 36(11), 891–893 (1980). [CrossRef]
  10. S. Agnello and B. Boizot, “Transient visible-UV absorption in beta irradiated silica,” J. Non-Cryst. Solids 322(1-3), 84–89 (2003). [CrossRef]
  11. L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1-3), 16–48 (1998). [CrossRef]
  12. P. Yeh, “Optical Waves in Layered Media”, Wiley, Singapore (1988).
  13. K. Hadobas, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotech. 11(3), 161–164 (2000). [CrossRef]
  14. G. J. Wilhelmi, J. W. Rouse, and A. J. Blanchard, “Depolarization of light back scattered from rough dielectrics,” J. Opt. Soc. Am. 65(9), 1036–1042 (1975). [CrossRef]
  15. J. C. Leader and W. A. J. Dalton, “Bidirectional Scattering of Electromagnetic Waves from the Volume of Dielectric Materials,” J. Appl. Phys. 43(7), 3080–3090 (1972). [CrossRef]
  16. D. J. Griffiths, “Introduction to Electrodynamics”, Prentice Hall, New Jersey (1999).
  17. E. Hecht, “Optics”, Addison Wesley, San Francisco (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited