OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 23 — Nov. 9, 2009
  • pp: 20833–20839

Mode-locked picosecond pulse generation from an octave-spanning supercontinuum

D. Kielpinski, M. G. Pullen, J. Canning, M. Stevenson, P. S. Westbrook, and K. S. Feder  »View Author Affiliations


Optics Express, Vol. 17, Issue 23, pp. 20833-20839 (2009)
http://dx.doi.org/10.1364/OE.17.020833


View Full Text Article

Enhanced HTML    Acrobat PDF (235 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We generate mode-locked picosecond pulses near 1110 nm by spectrally slicing and reamplifying an octave-spanning supercontinuum source pumped at 1550 nm. The 1110 nm pulses are near transform-limited, with 1.7 ps duration over their 1.2 nm bandwidth, and exhibit high interpulse coherence. Both the supercontinuum source and the pulse synthesis system are implemented completely in fiber. The versatile source construction suggests that pulse synthesis from sliced supercontinuum may be a useful technique across the 1000–2000 nm wavelength range.

© 2009 Optical Society of America

OCIS Codes
(140.4480) Lasers and laser optics : Optical amplifiers
(320.7140) Ultrafast optics : Ultrafast processes in fibers
(320.7160) Ultrafast optics : Ultrafast technology
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Ultrafast Optics

History
Original Manuscript: July 29, 2009
Revised Manuscript: September 7, 2009
Manuscript Accepted: October 7, 2009
Published: October 29, 2009

Citation
D. Kielpinski, M. G. Pullen, J. Canning, M. Stevenson, P. S. Westbrook, and K. S. Feder, "Mode-locked picosecond pulse generation from an octave-spanning supercontinuum," Opt. Express 17, 20833-20839 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-23-20833


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Hall, "Optical Frequency Measurement: 40 Years of Technology Revolutions," IEEE J. Sel. Top. Quantum Electron. 6, 1136 (2000). [CrossRef]
  2. T. Udem, R. Holzwarth, and T. W. Hänsch, "Optical Frequency Metrology," Nature 416, 233 (2002). [CrossRef] [PubMed]
  3. L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, "Optical Frequency Synthesis and Comparison with Uncertainty at the 10 -19 Level," Science 303, 1843 (2004). [CrossRef] [PubMed]
  4. D. J. Jones, S. A. Diddams, M. S. Taubman, S. T. Cundiff, L.-S. Ma, and J. L. Hall, "Frequency comb generation using femtosecond pulses and cross-phase modulation in optical fiber at arbitrary center frequencies," Opt. Lett. 25, 308 (2000). [CrossRef]
  5. T. R. Schibli, K. Minoshima, F.-L. Hong, H. Inaba, Y. Bitou, A. Onae, and H. Matsumoto, "Phase-locked widely tunable optical single-frequency generator based on a femtosecond comb," Opt. Lett. 30, 2323 (2005). [CrossRef] [PubMed]
  6. M. Vainio, M. Merimaa, and K. Nyholm, "Optical amplifier for femtosecond frequency comb measurements near 633 nm," Appl. Phys. B 81, 1053 (2005). [CrossRef]
  7. F. C. Cruz, M. C. Stowe, and J. Ye, "Tapered semiconductor amplifiers for optical frequency combs in the near infrared," Opt. Lett. 31, 1337 (2006). [CrossRef] [PubMed]
  8. H. S. Moon, E. B. Kim, S. E. Park, and C. Y. Park, "Selection and amplification of modes of an optical frequency comb using a femtosecond laser injection-locking technique," Appl. Phys. Lett. 89, 181110 (2006). [CrossRef]
  9. T. Morioka, K. Mori, and M. Saruwatari, "More Than 100-Wavelength-Channel Picosecond Optical Pulse Generation from single laser source using supercontinuum in Optical Fibres," Electron. Lett. 29, 862 (1993). [CrossRef]
  10. S. V. Smirnov, J. D. Ania-Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarina, and S. K. Turitsyn, "Optical spectral broadening and supercontinuum generation in telecom applications," Opt. Fiber Technol. 12, 122 (2006). [CrossRef]
  11. Ö Boyraz, J. Kim, M. N. Islam, and B. Jalali, "10 Gb/s MultipleWavelength, Coherent Short pulse source based on spectral carving of supercontinuum generated in fibers," J. Lightwave Technol. 18, 2167 (2000). [CrossRef]
  12. J. H. V. Price, K. Furusawa, T. M. Monro, L. Lefort, and D. J. Richardson, "Tunable, femtosecond pulse source operating in the range 1.06 - 1.33 mm based on an Yb3+-doped holey fiber amplifier," J. Opt. Soc. Am. B 19, 1286 (2002). [CrossRef]
  13. J. Porta, A. B. Grudinin, Z. J. Chen, J. D. Minelly, and N. J. Traynor, "Environmentally stable picosecond ytterbium fiber laser with a broad tuning range," Opt. Lett. 23, 615 (1998). [CrossRef]
  14. L. A. Gomes, L. Orsila, T. Jouhti, and O. G. Okhotnikov, "Picosecond SESAM-based Ytterbium mode-locked fiber lasers," IEEE J. Sel. Top. Quantum Electron. 10, 129 (2004). [CrossRef]
  15. P. S. Westbrook, J. W. Nicholson, K. S. Feder, Y. Li, and T. Brown, "Supercontinuum generation in a fiber grating," Appl. Phys. Lett. 85, 4600 (2004). [CrossRef]
  16. J. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135 (2006). [CrossRef]
  17. CorningSMF 28e optical fiber product information, available at http://www.corning.com
  18. M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, "Fibre Bragg grating compression-tuned over 110 nm," Electron. Lett. 39, 509 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited