OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 23 — Nov. 9, 2009
  • pp: 20866–20871

A microfluidic refractometric sensor based on gratings in optical fibre microwires

Fei Xu, Gilberto Brambilla, and Yanqing Lu  »View Author Affiliations

Optics Express, Vol. 17, Issue 23, pp. 20866-20871 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (198 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper we investigate a novel method to manufacture gratings in optical fiber microwires and discuss their application to sensing. Gratings can be manufactured by wrapping an optical fiber microwire on a microstructured rod. This method avoids post-processing the thin optical fiber microwire and it has great flexibility: chirping can be realized by designing the air hole size and position in the microstructured rod. By exploiting the large evanescent field in an inner channel, microfluidic refractometric sensors with sensitivity > 103 nm/RIU can be achieved.

© 2009 OSA

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:

Original Manuscript: September 14, 2009
Revised Manuscript: October 15, 2009
Manuscript Accepted: October 17, 2009
Published: October 30, 2009

Virtual Issues
Vol. 4, Iss. 13 Virtual Journal for Biomedical Optics

Fei Xu, Gilberto Brambilla, and Yanqing Lu, "A microfluidic refractometric sensor based on gratings in optical fibre microwires," Opt. Express 17, 20866-20871 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Brambilla, V. Finazzi, and D. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12(10), 2258–2263 (2004). [CrossRef] [PubMed]
  2. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003). [CrossRef] [PubMed]
  3. A. M. Clohessy, N. Healy, D. F. Murphy, and C. D. Hussey, “Short low-loss nanowire tapers on singlemode fibres,” Electron. Lett. 41(17), 954–955 (2005). [CrossRef]
  4. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978). [CrossRef]
  5. V. Hodzic, J. Orloff, and C. C. Davis, “Periodic Structures on Biconically Tapered Optical Fibers Using Ion Beam Milling and Boron Implantation,” J. Lightwave Technol. 22(6), 1610–1614 (2004). [CrossRef]
  6. D. Grobnic, S. J. Mihailov, C. W. Smelser, M. Becker, and M. W. Rothhardt, “Femtosecond laser fabrication of Bragg gratings in borosilicate ion-exchange waveguides,” IEEE Photon. Technol. Lett. 18(13), 1403–1405 (2006). [CrossRef]
  7. J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003). [CrossRef] [PubMed]
  8. M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004). [CrossRef] [PubMed]
  9. G. Brambilla, F. Xu, and X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterisation,” Electron. Lett. 42(9), 517–519 (2006). [CrossRef]
  10. W. Streifer, D. Scifres, and R. Burnham, “Coupling coefficients for distributed feedback single- and double-heterostructure diode lasers,” Quantum Electronics, IEEE Journal of 11(11), 867–873 (1975). [CrossRef]
  11. W. Streifer, and A. Hardy, “Analysis of two-dimensional waveguides with misaligned or curved gratings,” Quantum Electronics,” IEEE Journal of 14(12), 935–943 (1978).
  12. C. Y. Chao and L. J. Guo, “Design and optimization of microring resonators in biochemical sensing applications,” J. Lightwave Technol. 24(3), 1395–1402 (2006). [CrossRef]
  13. S. Campopiano, R. Bernini, L. Zeni, and P. M. Sarro, “Microfluidic sensor based on integrated optical hollow waveguides,” Opt. Lett. 29(16), 1894–1896 (2004). [CrossRef] [PubMed]
  14. I. M. White, H. Oveys, and X. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett. 31(9), 1319–1321 (2006). [CrossRef] [PubMed]
  15. M. Sumetsky, R. S. Windeler, Y. Dulashko, and X. Fan, “Optical liquid ring resonator sensor,” Opt. Express 15(22), 14376–14381 (2007). [CrossRef] [PubMed]
  16. A. Bernardi, S. Kiravittaya, A. Rastelli, R. Songmuang, D. J. Thurmer, M. Benyoucef, and O. G. Schmidt, “On-chip Si/SiO[sub x] microtube refractometer,” Appl. Phys. Lett. 93(9), 094106 (2008). [CrossRef]
  17. V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, “Refractometric sensor based on whispering-gallery modes of thin capillarie,” Opt. Express 15(19), 12011–12016 (2007). [CrossRef] [PubMed]
  18. M. Hee-Jong, P. Gun-Woo, L. Sang-Bum, A. Kyungwon, and L. Jai-Hyung, “Waveguide mode lasing via evanescent-wave-coupled gain from a thin cylindrical shell resonator,” Appl. Phys. Lett. 84(22), 4547–4549 (2004). [CrossRef]
  19. F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15(12), 7888–7893 (2007). [CrossRef] [PubMed]
  20. A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17(6), 1253–1255 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited