OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 23 — Nov. 9, 2009
  • pp: 20927–20937

High power pulsed fiber MOPA system incorporating electro-optic modulator based adaptive pulse shaping

Andrew Malinowski, Khu Tri Vu, Kang Kang Chen, Johan Nilsson, Yoonchan Jeong, Shaiful Alam, Dejiao Lin, and David J. Richardson  »View Author Affiliations

Optics Express, Vol. 17, Issue 23, pp. 20927-20937 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (540 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate active pulse shaping using an Electro-Optic Modulator in order to compensate the pulse shaping effects caused by Gain Saturation in a high power Yb doped fiber amplifier chain and to generate various custom-defined output pulse shapes. Square, step and smooth pulse shapes are achieved, with mJ pulse energies. Use of a modulator to shape pulses rather than direct modulation of the diode drive current allows us to eliminate undesired transients due to laser start up dynamics. The required shaping is calculated based on a simple measurement of amplifier performance, and does not require detailed modeling of the amplifier dynamics.

© 2009 OSA

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(140.2020) Lasers and laser optics : Diode lasers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: September 14, 2009
Manuscript Accepted: October 15, 2009
Published: November 2, 2009

Andrew Malinowski, Khu Tri Vu, Kang Kang Chen, Johan Nilsson, Yoonchan Jeong, Shaiful Alam, Dejiao Lin, and David J. Richardson, "High power pulsed fiber MOPA system incorporating electro-optic modulator based adaptive pulse shaping," Opt. Express 17, 20927-20937 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Desthieux, R. I. Laming, and D. N. Payne, “111 kW (0.5 mJ) pulse amplification at 1.5 µm using a gated cascade of three erbium-doped fiber amplifiers,” Appl. Phys. Lett. 63(5), 586–588 (1993). [CrossRef]
  2. D. Taverner, D. J. Richardson, L. Dong, J. E. Caplen, K. Williams, and R. V. Penty, “158-microJ pulses from a single-transverse-mode, large-mode-area erbium-doped fiber amplifier,” Opt. Lett. 22(6), 378–380 (1997). [CrossRef] [PubMed]
  3. S. A. Guskov, S. V. Popov, S. Chernikov, and J. R. Taylor, “Second harmonic generation around 0.53 μm of seeded Yb fibre system in periodically-poled lithium niobate,” Electron. Lett. 34(14), 1419–1420 (1998). [CrossRef]
  4. P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett. 18(9), 1013–1015 (2006). [CrossRef]
  5. P. Dupriez, C. Finot, A. Malinowski, J. K. Sahu, J. Nilsson, D. J. Richardson, K. G. Wilcox, H. D. Foreman, and A. C. Tropper, “High-power, high repetition rate picosecond and femtosecond sources based on Yb-doped fiber amplification of VECSELs,” Opt. Express 14(21), 9611–9616 (2006). [CrossRef] [PubMed]
  6. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-Doped Fiber Amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997). [CrossRef]
  7. L. M. Frantz and J. S. Nodvik, “Theory of Pulse Propagation in a Laser amplifier,” J. Appl. Phys. 34(8), 2346–2349 (1963). [CrossRef]
  8. Y. Wang and H. Po, “Dynamic Characteristics of Double-Clad Fiber Amplifiers for High-Power Pulse Amplification,” J. Lightwave Technol. 21(10), 2262–2270 (2003). [CrossRef]
  9. W. Williams, C. Orth, R. Sacks, J. Lawson, K. Jancaitis, J. Trenholme, S. Haney, J. Auerbach, M. Henesian, and P. Renard, “NIF Design Optimization,” in Inertial Confinement Fusion Annual Report, (Lawrence Livermore National Laboratory, 1996) p. 184.
  10. M. Shaw, W. Williams, R. House, and C. Haynam, “Laser Performance Operations Model (LPOM),” in Inertial Confinement Fusion Semiannual Report (Lawrence Livermore National Laboratory, 2004).
  11. W. Shaikh, I. O. Musgrave, A. S. Bhamra, and C. Hernandez-Gomez, “Development of an amplified variable shaped long pulse system for Vulcan,” in Central Laser Facility Annual Report (CCLRC Rutherford Appleton Laboratory, 2005/2006) p. 199.
  12. K. T. Vu, A. Malinowski, D. J. Richardson, F. Ghiringhelli, L. M. B. Hickey, and M. N. Zervas, “Adaptive pulse shape control in a diode-seeded nanosecond fiber MOPA system,” Opt. Express 14(23), 10996–11001 (2006). [CrossRef] [PubMed]
  13. D. N. Schimpf, C. Ruchert, D. Nodop, J. Limpert, A. Tünnermann, and F. Salin, “Compensation of pulse-distortion in saturated laser amplifiers,” Opt. Express 16(22), 17637–17646 (2008). [CrossRef] [PubMed]
  14. A. E. Siegman, Lasers, (University Science Books, Sausalito, CA, 1986).
  15. E. Lichtman, A. A. Friesem, R. G. Waarts, and H. H. Yaffe, “Stimulated Brillouin-Scattering Excited By 2 Pump Waves In Single-Mode Fibers,” J. Opt. Soc. Am. B 4(9), 1397–1403 (1987). [CrossRef]
  16. R. G. Smith, “Optical Power Handling Capacity of Low Loss Optical Fibers as Determined by Stimulated Raman and Brillouin Scattering,” Appl. Opt. 11(11), 2489 (1972). [CrossRef] [PubMed]
  17. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008). [CrossRef] [PubMed]
  18. C. Jauregui, J. Limpert, and A. Tünnermann, “Derivation of Raman treshold formulas for CW double-clad fiber amplifiers,” Opt. Express 17(10), 8476–8490 (2009). [CrossRef] [PubMed]
  19. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated Annealing,” Science 220(4598), 671–680 (1983). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited