OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 23 — Nov. 9, 2009
  • pp: 20952–20958

Enhanced 2.0 μm emission and gain coefficient of transparent glass ceramic containing BaF2: Ho3+,Tm3+ nanocrystals

W. J. Zhang, Q. Y. Zhang, Q. J. Chen, Q. Qian, Z. M. Yang, J. R. Qiu, P. Huang, and Y. S. Wang  »View Author Affiliations


Optics Express, Vol. 17, Issue 23, pp. 20952-20958 (2009)
http://dx.doi.org/10.1364/OE.17.020952


View Full Text Article

Enhanced HTML    Acrobat PDF (573 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Transparent glass ceramic containing BaF2:Ho3+,Tm3+ nanocrystals has been prepared by melt quenching and subsequent thermal treatment. The precipitation of BaF2 nanocrystals was confirmed by X-ray diffraction and high-resolution transmission electron microscopy. Intense 2.0 µm fluorescence originating from Ho3+: 5I75I8 transition was achieved upon excitation with 808 nm laser diode. A large ratio of forward Tm3+ → Ho3+ energy transfer constant to that of backward process indicated high efficient energy transfer from Tm3+(3F4) to Ho3+(5I7), benefited from the reduced ionic distances of Tm3+-Tm3+ and Tm3+-Ho3+ pairs and low phonon energy environment with the incorporation of rare-earth ions into the precipitated BaF2 nanocrystals. The results indicate that glass ceramic is a promising candidate material for 2.0 μm laser.

© 2009 OSA

OCIS Codes
(160.4670) Materials : Optical materials
(160.5690) Materials : Rare-earth-doped materials
(300.6340) Spectroscopy : Spectroscopy, infrared

ToC Category:
Materials

History
Original Manuscript: September 28, 2009
Revised Manuscript: October 25, 2009
Manuscript Accepted: October 28, 2009
Published: November 2, 2009

Citation
W. J. Zhang, Q. Y. Zhang, Q. J. Chen, Q. Qian, Z. M. Yang, J. R. Qiu, P. Huang, and Y. S. Wang, "Enhanced 2.0 μm emission and gain coefficient of transparent glass ceramic containing BaF2: Ho3+,Tm3+ nanocrystals," Opt. Express 17, 20952-20958 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-23-20952


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. O. A. Louchev, Y. Urata, M. Yumoto, N. Saito, and S. Wada, “Thermo-optical modeling of high power operation of 2 μm codoped Tm, Ho solid-state lasers,” J. Appl. Phys. 104(3), 033114 (2008). [CrossRef]
  2. A. Taniguchi, T. Kuwayama, A. Shirakawa, M. Musha, K. Ueda, and M. Prabhu, “1212 nm pumping of 2 μm Tm-Ho-codoped silica fiber laser,” Appl. Phys. Lett. 81(20), 3723–3725 (2002). [CrossRef]
  3. Y. Tsang, B. Richards, D. Binks, J. Lousteau, and A. Jha, “Tm3+/Ho3+ codoped tellurite fiber laser,” Opt. Lett. 33(11), 1282–1284 (2008). [CrossRef] [PubMed]
  4. C. J. Lee, G. Han, and N. P. Barnes, “Ho:Tm Lasers II: Experiments,” IEEE J. Quantum Electron. 32(1), 104–111 (1996). [CrossRef]
  5. R. M. Percival, D. Szebesta, S. T. Davey, N. A. Swain, and T. A. King, “Thulium sensitised holmium-doped CW fluoride fiber laser of high efficiency,” Electron. Lett. 28(24), 2231–2232 (1992). [CrossRef]
  6. J. Yu, A. Braud, and M. Petros, “600-mJ, double-pulse 2-μm laser,” Opt. Lett. 28(7), 540–542 (2003). [CrossRef] [PubMed]
  7. J. Yu, B. C. Trieu, E. A. Modlin, U. N. Singh, M. J. Kavaya, S. Chen, Y. Bai, P. J. Petzar, and M. Petros, “1 J/pulse Q-switched 2 μm solid-state laser,” Opt. Lett. 31(4), 462–464 (2006). [CrossRef] [PubMed]
  8. S. D. Jackson, “8.8W diode-cladding-pumped Tm3+, Ho3+-doped fluoride fibre laser,” Electron. Lett. 37(13), 821–822 (2001). [CrossRef]
  9. D. C. Tran, G. H. Sigel, and B. Bendow, “Heavy metal fluoride glasses and fibers: a review,” J. Lightwave Technol. 2(5), 566–586 (1984). [CrossRef]
  10. Q. Y. Zhang, T. Li, Z. H. Jiang, X. H. Ji, and S. Buddhudu, “980 nm laser-diode-excited intense blue upconversion in Tm3+/Yb3+-codoped gallate-bismuth-lead glasses,” Appl. Phys. Lett. 87(17), 171911 (2005). [CrossRef]
  11. Y. Wang and J. Ohwaki, “New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion,” Appl. Phys. Lett. 63(24), 3268–3270 (1993). [CrossRef]
  12. D. Chen, Y. Wang, Y. Yu, and P. Huang, “Intense ultraviolet upconversion luminescence from Tm3+/Yb3+: β-YF3 nanocrystals embedded glass ceramic,” Appl. Phys. Lett. 91(5), 051920 (2007). [CrossRef]
  13. X. Qiao, X. Fan, and M. Wang, “Spectroscopic properties of Er3+ doped glass ceramics containing Sr2GdF7 nanocrystals,” Appl. Phys. Lett. 89(11), 111919 (2006). [CrossRef]
  14. B. N. Samson, P. A. Tick, and N. F. Borrelli, “Efficient neodymium-doped glass-ceramic fiber laser and amplifier,” Opt. Lett. 26(3), 145–147 (2001). [CrossRef] [PubMed]
  15. M. Mattarelli, V. K. Tikhomirov, A. B. Seddon, M. Montagna, E. Moser, A. Chiasera, S. Chaussedent, G. Nunzi Conti, S. Pelli, G. C. Righini, L. Zampedri, and M. Ferrari, “Tm3+-activated transparent oxy-fluoride glass-ceramics: structural and spectroscopic properties,” J. Non-Cryst. Solids 345&346, 354–358 (2004). [CrossRef]
  16. S. Tanabe, T. Ohyagi, N. Soga, and T. Hanada, “Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses,” Phys. Rev. B 46(6), 3305–3310 (1992). [CrossRef]
  17. X. Zou and T. Izumitani, “Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162(1-2), 68–80 (1993). [CrossRef]
  18. B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission crosss sections,” IEEE J. Quantum Electron. 18(5), 925–930 (1982). [CrossRef]
  19. D. E. McCumber, “Theory of phonon-terminated optical masers,” Phys. Rev. 134(2A), A299–A306 (1964). [CrossRef]
  20. S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 μm,” IEEE J. Sel. Top. Quantum Electron. 13(3), 567–572 (2007). [CrossRef]
  21. X. Zou and H. Toratani, “Spectroscopic properties and energy transfers in Tm3+ singly- and Tm3+/Ho3+doubly-doped glasses,” J. Non-Cryst. Solids 195(1-2), 113–124 (1996). [CrossRef]
  22. D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21(5), 836–850 (1953). [CrossRef]
  23. J. H. Song, J. Heo, and S. H. Park, “1.48-μm emission properties and energy transfer between Tm3+ and Ho3+/Tb3+ in Ge-Ga-As-S-CsBr glasses,” J. Appl. Phys. 97(8), 083542 (2005). [CrossRef]
  24. L. Huang, S. Shen, and A. Jha, “Near infrared spectroscopic investigation of Tm3+-Yb3+ co-doped tellurite glasses,” J. Non-Cryst. Solids 345&346, 349–353 (2004). [CrossRef]
  25. B. Richards, S. Shen, A. Jha, Y. Tsang, and D. Binks, “Infrared emission and energy transfer in Tm(3+), Tm3+-Ho3+ and Tm3+-Yb3+-doped tellurite fibre,” Opt. Express 15(11), 6546–6551 (2007). [CrossRef] [PubMed]
  26. L. D. da Vila, L. Gomes, L. V. G. Tarelho, S. J. L. Ribeiro, and Y. Messaddeq, “Dynamics of Tm-Ho energy transfer and deactivation of the 3F4 low level of thulium in fluorozirconate glasses,” J. Appl. Phys. 95(10), 5451–5463 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited