OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 23 — Nov. 9, 2009
  • pp: 20975–20990

How much can guided modes enhance absorption in thin solar cells?

Peter N. Saeta, Vivian E. Ferry, Domenico Pacifici, Jeremy N. Munday, and Harry A. Atwater  »View Author Affiliations

Optics Express, Vol. 17, Issue 23, pp. 20975-20990 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (667 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Absorption enhancement in thin metal-backed solar cells caused by dipole scatterers embedded in the absorbing layer is studied using a semi-analytical approach. The method accounts for changes in the radiation rate produced by layers above and below the dipole, and treats incoherently the subsequent scattering of light in guided modes from other dipoles. We find large absorption enhancements for strongly coupled dipoles, exceeding the ergodic limit in some configurations involving lossless dipoles. An antireflection-coated 100-nm layer of a-Si:H on Ag absorbs up to 87% of incident above-gap light. Thin layers of both strong and weak absorbers show similar strongly enhanced absorption.

© 2009 Optical Society of America

OCIS Codes
(130.0250) Integrated optics : Optoelectronics
(160.3900) Materials : Metals
(160.6000) Materials : Semiconductor materials
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Solar Energy

Original Manuscript: September 1, 2009
Revised Manuscript: October 10, 2009
Manuscript Accepted: October 11, 2009
Published: November 3, 2009

Peter N. Saeta, Vivian E. Ferry, Domenico Pacifici, Jeremy N. Munday, and Harry A. Atwater, "How much can guided modes enhance absorption in thin solar cells?," Opt. Express 17, 20975-20990 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Shockley and H. J. Queisser, "Detailed balance limit of efficiency of p-n junction solar cells," J. Appl. Phys. 32, 510-519 (1961). [CrossRef]
  2. C. H. Henry, "Limiting efficiencies of ideal single and multiple energy-gap terrestrial solar-cells," J. Appl. Phys. 51, 4494-4500 (1980). [CrossRef]
  3. K. Schick, E. Daub, S. Finkbeiner, and P. W¨urfel, "Verification of a generalized Planck law for luminescence radiation from silicon solar cells," Appl. Phys. A: Mat. Sci. Proc. 54, 109-114 (1992). [CrossRef]
  4. P. Campbell and M. A. Green, "Light trapping properties of pyramidally textured surfaces," J. Appl. Phys. 62, 243-249 (1987). [CrossRef]
  5. S. S. Hegedus and X. Deng, "Analysis of optical enhancement in a-si n-i-p solar cells using a detachable back reflector," Conference Record of the 25th IEEE Photovoltaic Specialists Conference pp. 1061-1064 (1996).
  6. H. R. Stuart and D. G. Hall, "Thermodynamic limit to light trapping in thin planar structures," J. Opt. Soc. Am. A 14, 3001-3008 (1997). [CrossRef]
  7. H. Stuart and D. G. Hall, "Island size effects in nanoparticle-enhanced photodetectors," Appl. Phys. Lett. 73, 3815-3817 (1998). [CrossRef]
  8. B. Soller and D. G. Hall, "Energy transfer at optical frequencies to silicon-based waveguiding structures," J. Opt. Soc. Am. A 18, 2577-2584 (2001). [CrossRef]
  9. D. Derkacs, S. H. Lim, P. Matheu,W. Mar, and E. T. Yu, "Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles," Appl. Phys. Lett. 89, 093103 (2006). [CrossRef]
  10. K. Nakayama, K. Tanabe, and H. Atwater, "Plasmonic nanoparticle enhanced light absorption in GaAs solar cells," Appl. Phys. Lett. 93, 121904 (2008). [CrossRef]
  11. K. R. Catchpole and S. Pillai, "Absorption enhancement due to scattering by dipoles into silicon waveguides," J. Appl. Phys. 100, 044504 (2006). [CrossRef]
  12. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, "Surface plasmon enhanced silicon solar cells," J. Appl. Phys. 101, 093105 (2007). [CrossRef]
  13. F. J. Beck, A. Polman, and K. R. Catchpole, "Tunable light trapping for solar cells using localized surface plasmons," J. Appl. Phys. 105, 114310 (2009). [CrossRef]
  14. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, "Plasmonic nanostructure design for efficient light coupling into solar cells," Nano Lett. 8, 4391-4397 (2008). [CrossRef]
  15. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, A Wiley-Interscience publication (Wiley, 1983).
  16. The law of refraction is usually attributed (in English-speaking countries) to the Dutch astronomer and mathematician Willebrord Snel van Royen, which he enunciated in 1621, although some scholars argue that the law was first discovered by Ibn Sahl in 984.
  17. M. Born and E. Wolf, Principles of Optics, 6th ed. (Cambridge University Press, 1999).
  18. E. Yablonovitch and G. D. Cody, "Intensity enhancement in textured optical sheets for solar-cells," IEEE Trans. Electron. Devices 29, 300-305 (1982). [CrossRef]
  19. T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, "Limiting efficiency of silicon solar cells," IEEE Trans. Electron. Devices ED-31, 711-716 (1984). [CrossRef]
  20. P. Sheng, "Optical absorption of thin film on a Lambertian reflector substrate," IEEE Trans. Electron. Devices ED-31, 634-636 (1984). [CrossRef]
  21. J. E. Sipe, "The dipole antenna problem in surface physics: a new approach," Surf. Sci. 105, 498-504 (1981). [CrossRef]
  22. G. W. Ford and W. H. Weber, "Electromagnetic interactions of molecules with metal surfaces," Phys. Rpt. 113, 195-287 (1984). [CrossRef]
  23. H. Benisty, R. Stanley, and M. Mayer, "Method of source terms for dipole emission modification in modes of arbitrary planar structures," J. Opt. Soc. Am. A 15, 1192-1201 (1998). [CrossRef]
  24. W. L. Barnes, "Fluorescence near interfaces: The role of photonic mode density," J. Mod. Opt. 45, 661-699 (1998). [CrossRef]
  25. J. C. Mertz, "Radiative absorption, fluorescence, and scattering of a classical dipole near a lossless interface: a unified description," J. Opt. Soc. Am. B 17, 1906-1913 (2000). [CrossRef]
  26. A. C. Hryciw, Y. C. Jun, and M. L. Brongersma, "Plasmon-enhanced emission from optically-doped MOS light sources," Opt. Express 17, 185-192 (2009). [CrossRef] [PubMed]
  27. F. Leblanc, J. Perrin, and J. Schmitt, "Numerical modeling of the optical properties of hydrogenated amorphoussilicon-based p-i-n solar cells deposited on rough transparent conducting oxide substrates," J. Appl. Phys. 75, 1074-1087 (1994). [CrossRef]
  28. D. Poitras and J. Dobrowolski, "Toward perfect antireflection coatings. 2. Theory," Appl. Opt. 43, 1286-1295 (2004). [CrossRef] [PubMed]
  29. M.-L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, L. K. Kim, E. F. Schubert, and S.-Y. Lin, "Realization of a near-perfect antireflection coating for silicon solar energy utilization," Opt. Lett. 33, 2527-2529 (2008). [CrossRef] [PubMed]
  30. ASTM G-173-03 (accessed 30 September 2008).http://rredc.nrel.gov/solar/spectra/ am1.5/.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited