OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 23 — Nov. 9, 2009
  • pp: 21066–21076

Angled sidewalls in silicon slot waveguides: conformal filling and mode properties

A. Säynätjoki, T. Alasaarela, A. Khanna, L. Karvonen, P. Stenberg, M. Kuittinen, A. Tervonen, and S. Honkanen  »View Author Affiliations

Optics Express, Vol. 17, Issue 23, pp. 21066-21076 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (529 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Effect of angled sidewalls on the filling and properties of silicon slot waveguides is discussed. We demonstrate complete filling of slot waveguide structures with oxide material systems using the atomic layer deposition technique and discuss use of various slot filling materials. Properties of the optical modes in angled-sidewall slot waveguides are studied. Enhanced vertical confinement is obtained with certain waveguide parameters. The reduced effective mode area enhances e.g. nonlinear effects in the waveguide. We discuss the use of atomic layer deposition in realization of filled slot waveguides optimized for all-optical functionalities.

© 2009 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3130) Integrated optics : Integrated optics materials
(230.7370) Optical devices : Waveguides
(230.7390) Optical devices : Waveguides, planar
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Integrated Optics

Original Manuscript: October 2, 2009
Manuscript Accepted: November 1, 2009
Published: November 4, 2009

A. Säynätjoki, T. Alasaarela, A. Khanna, L. Karvonen, P. Stenberg, M. Kuittinen, A. Tervonen, and S. Honkanen, "Angled sidewalls in silicon slot waveguides: conformal filling and mode properties," Opt. Express 17, 21066-21076 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Lipson, "Guiding, modulating, and emitting light on silicon - challenges and opportunities," J. Lightwave Technol. 23, 4222 (2005). [CrossRef]
  2. G. T. Reed, "The optical age of silicon," Nature 427, 595 (2004). [CrossRef] [PubMed]
  3. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron. 11, 232 (2005). [CrossRef]
  4. S. Afshar V. and T. M. Monro, "A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity," Opt. Express 17, 2298-2318 (2009). [CrossRef]
  5. Q. Xu, V.R. Almeida, R.R. Panepucci, and M. Lipson, "Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material," Opt. Lett. 29, 1626 (2004). [CrossRef] [PubMed]
  6. Rong Sun, Po Dong, Ning-ningFeng , Ching-yinHong , Jurgen Michel, Michal Lipson, and Lionel Kimerling, "Horizontal single and multiple slot waveguides: optical transmission at λ =1550 nm," Opt. Express 15, 17967-17972 (2007). [CrossRef] [PubMed]
  7. N. Daldosso and L. Pavesi, "Nanosilicon photonics," Laser Photon. Rev., 1-27 (2009).
  8. N.-N. Feng, R. Sun, L. C. Kimerling, and J. Michel, "Lossless strip-to-slot waveguide transformer," Opt. Lett. 32, 1250-1252 (2007). [CrossRef] [PubMed]
  9. G. Wang, T. Baehr-Jones, M. Hochberg, and A. Scherer, "Design and fabrication of segmented, slotted waveguides for electro-optic modulation," Appl. Phys. Lett. 91, 143109 (2007). [CrossRef]
  10. E. Jordana, J.M. Fedeli, P. Lyan, J.P. Colonna, P.E. Gautier, N. Daldosso, L. Pavesi, Y. Lebour, P. Pellegrino, B. Garrido, J. Blasco, T. Cuesta-Soto, and P. Sanchis, "Deep-UV Lithography Fabrication of SlotWaveguides and Sandwiched Waveguides for Nonlinear Applications," Group IV Photonics, 2007 4th IEEE International Conference on paper ThC3.
  11. T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, "High-Q optical resonators in silicon-on-insulatorbased slot waveguides," Appl. Phys. Lett. 86, 081101 (2005). [CrossRef]
  12. R.L. Puurunen, "Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process," J. Appl. Phys. 97, 121301 (2005). [CrossRef]
  13. T. Pilvi, E. Puukilainen, U. Kreissig, M. Leskelä, and M. Ritala, "Atomic Layer Deposition of MgF2 Thin Films Using TaF5 as a Novel Fluorine Source," Chem. Mater. 20, 5023-5028 (2008). [CrossRef]
  14. P. Müllner, R. Hainberger, "Optical characteristics of V-groove waveguide structures," Proc. SPIE 7220, 722004 (2009). [CrossRef]
  15. P. Sanchis, J. Blasco, A. Martinez, and J. Marti, "Design of Silicon-Based Slot Waveguide Configurations for Optimum Nonlinear Performance," J. Lightwave Technol. 25, 1298-1305 (2007). [CrossRef]
  16. F. Dell’Olio and V. M. Passaro, "Optical sensing by optimized silicon slot waveguides," Opt. Express 15, 4977-4993 (2007). [CrossRef] [PubMed]
  17. A. Säynätjoki, L. Karvonen, A. Khanna, T. Alasaarela, A. Tervonen, and S. Honkanen, "Silicon slot waveguides for nonlinear optics," Proc. SPIE 7212, 72120T (2009). [CrossRef]
  18. R. Adair, L.L. Chase, and S.A. Payne, "Nonlinear refractive index of optical crystals," Phys. Rev. B 39, 3337 -3350 (1989). [CrossRef]
  19. T. Alasaarela, A. Säynätjoki, T. Hakkarainen, and S. Honkanen, "Feature size reduction of silicon slot waveguides by partial filling using atomic layer deposition," Opt. Eng. 48, 080502 (2009). [CrossRef]
  20. C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, "Nonlinear silicon-on-insulator waveguides for all-optical signal processing," Opt. Express 15, 5976-5990 (2007). [CrossRef] [PubMed]
  21. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude and J. Leuthold, "All-optical high-speed signal processing with silicon-organic hybrid slot waveguides," Nat. Photonics 3, 216-219 (2009). [CrossRef]
  22. B. Esembeson, M. L. Scimeca, T. Michinobu, F. Diederich, and I. Biaggio, "A high-optical quality supramolecular assembly for third-order integrated nonlinear optics," Adv. Mater. 20, 4584-4587 (2008). [CrossRef]
  23. S. Morino, T. Yamashita, K. Horie, T. Wada, and H. Sasabe, "Third-order nonlinear optical properties of aromatic polyisoimides," Reactive and Functional Polymers 44, 183-188 (2000). [CrossRef]
  24. M. Putkonen, J. Harjuoja, T. Sajavaara and L. Niinistö, "Atomic layer deposition of polyimide thin films," J. Mater. Chem. 17, 664 - 669 (2007). [CrossRef]
  25. Y. Guo, K. S. Chiang, and H. Li, Nonlinear photonics, (Springer).
  26. M. E. Lines, "Influence of d orbitals on the nonlinear optical response of transparent transition-metal oxides," Phys. Rev. B. 43, 11978-11990 (1991). [CrossRef]
  27. A. Major, F. Yoshino, I. Nikolakakos, J. Stewart Aitchison, and P. W. E. Smith, "Dispersion of the nonlinear refractive index in sapphire," Opt. Lett. 29, 602-604 (2004). [CrossRef] [PubMed]
  28. R. Spano, N. Daldosso, M. Cazzanelli, L. Ferraioli, L. Tartara, J. Yu, V. Degiorgio, E. Jordana, J. M. Fedeli, and L. Pavesi, "Bound electronic and free carrier nonlinearities in Silicon nanocrystals at 1550nm," Opt. Express 17, 3941-3950 (2009). [CrossRef] [PubMed]
  29. FimmWave 5.1, November 2008, PhotonDesign Ltd.; www.photond.com.
  30. A. Gondarenko, S. Preble, J. Robinson, L. Chen, H. Lipson, and M. Lipson, "Spontaneous Emergence of Periodic Patterns in a Biologically Inspired Simulation of Photonic Structures," Phys. Rev. Lett. 96, 143904 (2006). [CrossRef] [PubMed]
  31. K. Worhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, "Reliable Low-Cost Fabrication of Low-Loss Al2O3:Er3+ Waveguides With 5.4-dB Optical Gain," IEEE J. Quantum Electron. 45, 454-461 (2009). [CrossRef]
  32. M. Tiitta and L. Niinistö, "Volatile Metal beta-Diketonates: ALE and CVD precursors for electroluminescent device thin films," Chem. Vap. Deposition 3, 167-182 (1997). [CrossRef]
  33. Jacob T. Robinson, Kyle Preston, Oskar Painter, and Michal Lipson, "First-principle derivation of gain in high index-contrast waveguides," Opt. Express 16, 16659-16669 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited