OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 23 — Nov. 9, 2009
  • pp: 21083–21090

Tests of a practical visible-NIR imaging Fourier transform spectrometer for biological and chemical fluorescence emission measurements

Jianping Li, Robert K.Y. Chan, and Xuzhu Wang  »View Author Affiliations


Optics Express, Vol. 17, Issue 23, pp. 21083-21090 (2009)
http://dx.doi.org/10.1364/OE.17.021083


View Full Text Article

Enhanced HTML    Acrobat PDF (209 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An imaging Fourier transform spectrometer (IFTS) designed for fluorescence emission measurements is reported. The spectral range extension from NIR to visible of the system is realized by using a simple and low-cost optical beam-folding position-tracking technique. Spectral resolution as high as 9.78cm−1(0.4nm at 632.8nm) and maximum image resolution up to 300×300 pixels are proved by the system tests on its optical performances. Imaging fluorescence spectra acquisition of quantum dot clusters and single 200nm diameter fluorescent beads have demonstrated the system’s potential for high throughput imaging spectroscopic measurements of fluorescent biological and chemical samples.

© 2009 OSA

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(110.4234) Imaging systems : Multispectral and hyperspectral imaging

ToC Category:
Imaging Systems

History
Original Manuscript: August 17, 2009
Revised Manuscript: September 3, 2009
Manuscript Accepted: September 9, 2009
Published: November 4, 2009

Virtual Issues
Vol. 4, Iss. 13 Virtual Journal for Biomedical Optics

Citation
Jianping Li, Robert K.Y. Chan, and Xuzhu Wang, "Tests of a practical visible-NIR imaging Fourier transform spectrometer for biological and chemical fluorescence emission measurements," Opt. Express 17, 21083-21090 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-23-21083


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Hiraoka, T. Shimi, and T. Haraguchi, “Multispectral imaging fluorescence microscopy for living cells,” Cell Struct. Funct. 27(5), 367–374 (2002). [CrossRef] [PubMed]
  2. T. Zimmermann, J. Rietdorf, A. Girod, V. Georget, and R. Pepperkok, “Spectral imaging and linear un-mixing enables improved FRET efficiency with a novel GFP2-YFP FRET pair,” FEBS Lett. 531(2), 245–249 (2002). [CrossRef] [PubMed]
  3. E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996). [CrossRef] [PubMed]
  4. G. L. Liu, J. C. Doll, and L. P. Lee, “High-speed multispectral imaging of nanoplasmonic array,” Opt. Express 13(21), 8520–8525 (2005), 
 http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-21-8520 . [CrossRef] [PubMed]
  5. Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: Principles and applications,” Cytom, Part A 69A, 735–747 (2006). [CrossRef]
  6. R. J. Bell, Introductory Fourier transform spectroscopy (Academic Press, New York, 1972).
  7. S. Wartewig, IR and Raman spectroscopy: fundamental processing, Spectroscopic techniques. An interactive course. (Wiley-VCH, Weinheim, 2003).
  8. M. Fisher, V. Bulatov, S. Hasson, and I. Schechter, “Fast aerosol analysis by Fourier transform imaging fluorescence microscopy,” Anal. Chem. 70(11), 2409–2414 (1998). [CrossRef] [PubMed]
  9. R. K. Y. Chan, P. K. Lim, X. Z. Wang, and M. H. Chan, “Fourier transform ultraviolet-visible spectrometer based on a beam-folding technique,” Opt. Lett. 31(7), 903–905 (2006). [CrossRef] [PubMed]
  10. X. Z. Wang, R. K. Y. Chan, and A. S. K. Cheng, “Near UV-near IR Fourier transform spectrometer using the beam-folding position-tracking method based on retroreflectors,” Rev. Sci. Instrum. 79(12), 123108–123106 (2008). [CrossRef] [PubMed]
  11. N. J. E. Johnson, “Spectral imaging with the Michelson interferometer,” Proc. SPIE 226, 2–9 (1980).
  12. E. H. Wishnow, R. E. Wurtz, S. Blais-Ouellette, K. H. Cook, D. J. Carr, I. T. Lewis, F. Grandmont, and C. W. Stubbs, “Visible Imaging Fourier Transform Spectrometer: Design and Calibration,” Proc. SPIE 4841, 1067–1077 (2003). [CrossRef]
  13. D. Zhao, Z. He, W. H. Chan, and M. M. F. Choi, “Synthesis and Characterization of High-Quality Water-Soluble Near-Infrared-Emitting CdTe/CdS Quantum Dots Capped by N-Acetyl-l-cysteine Via Hydrothermal Method,” J. Phys. Chem. C 113(4), 1293–1300 (2008). [CrossRef]
  14. H. R. Petty, “Fluorescence microscopy: Established and emerging methods, experimental strategies, and applications in immunology,” Microsc. Res. Tech. 70(8), 687–709 (2007). [CrossRef] [PubMed]
  15. D. Axelrod, “Total internal reflection fluorescence microscopy in cell biology,” in Biophotonics, Pt B (Academic Press Inc, San Diego, 2003).
  16. A. Curry, W. L. Hwang, and A. Wax, “Epi-illumination through the microscope objective applied to darkfield imaging and microspectroscopy of nanoparticle interaction with cells in culture,” Opt. Express 14(14), 6535–6542 (2006), 
 http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-14-6535 . [CrossRef] [PubMed]
  17. J. Yang, S. R. Dave, and X. H. Gao, “Quantum dot nanobarcodes: Epitaxial assembly of nanoparticle-polymer complexes in homogeneous solution,” J. Am. Chem. Soc. 130(15), 5286–5292 (2008). [CrossRef] [PubMed]
  18. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited