OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 23 — Nov. 9, 2009
  • pp: 21098–21107

Room-temperature photoluminescence in erbium-doped deuterated amorphous carbon prepared by low-temperature MO-PECVD

Raymond Y. C. Tsai, Li Qian, Hossein Alizadeh, and Nazir P. Kherani  »View Author Affiliations


Optics Express, Vol. 17, Issue 23, pp. 21098-21107 (2009)
http://dx.doi.org/10.1364/OE.17.021098


View Full Text Article

Enhanced HTML    Acrobat PDF (289 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on a novel optical thin film material, erbium-doped deuterated amorphous carbon, fabricated directly on silicon substrate at room-temperature via controlled thermal evaporation of a Metal-Organic compound in a Plasma-Enhanced Chemical Vapour Deposition (MO-PECVD) system. High erbium concentrations (up to 2.3 at.%) and room-temperature photoluminescence at 1.54 μm are successfully demonstrated. Concentration quenching due to erbium clustering is reduced by adopting an appropriate MO precursor—Er(tmhd)3. Another quenching mechanism, caused by non-radiative C-H and O-H vibrational transitions, is shown for the first time to be significantly reduced by deuteration instead of hydrogenation of amorphous carbon. Our results suggest that erbium-doped deuterated amorphous carbon is a promising new class of photonic material for silicon-compatible optoelectronics applications in the technologically important 1.5μm wavelength region.

© 2009 OSA

OCIS Codes
(130.3130) Integrated optics : Integrated optics materials
(160.5690) Materials : Rare-earth-doped materials

ToC Category:
Materials

History
Original Manuscript: August 24, 2009
Revised Manuscript: October 16, 2009
Manuscript Accepted: October 19, 2009
Published: November 4, 2009

Citation
Raymond Y. C. Tsai, Li Qian, Hossein Alizadeh, and Nazir P. Kherani, "Room-temperature photoluminescence in erbium-doped deuterated amorphous carbon prepared by low-temperature MO-PECVD," Opt. Express 17, 21098-21107 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-23-21098


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Polman, “Erbium implanted thin film photonic materials,” J. Appl. Phys. 82(1), 1–39 (1997). [CrossRef]
  2. M. E. Castagna, A. Muscara, S. Leonardi, S. Coffa, L. Caristia, C. Tringali, and S. Lorenti, “Si-based erbium-doped light-emitting devices,” J. Lumin. 121(2), 187–192 (2006). [CrossRef]
  3. J. Lee, J. H. Shin, and N. Park, “Optical gain at 1.5 μm in nanocrystal Si-sensitized Er-doped silica waveguide using top-pumping 470 nm LEDs,” J. Lightwave Technol. 23(1), 19–25 (2005). [CrossRef]
  4. V. Toccafondo, F. Di Pasquale, S. Faralli, N. Daldosso, L. Pavesi, and H. E. Hernandez-Figueroa, “Study of an efficient longitudinal multimode pumping scheme for Si-nc sensitized EDWAs,” Opt. Express 15(22), 14907–14913 (2007). [CrossRef] [PubMed]
  5. A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold erbium-implanted toroidal microlaser on silicon,” Appl. Phys. Lett. 84(7), 1037–1039 (2004). [CrossRef]
  6. R. A. Babunts, V. A. Vetrov, I. V. Ilin, E. N. Mokhov, N. G. Romanov, V. A. Khramtsov, and P. G. Baranov, “Properties of erbium luminescence in bulk crystals of silicon carbide,” Phys. Solid State 42(5), 829–835 (2000). [CrossRef]
  7. M. Markmann, E. Neufeld, A. Sticht, K. Brunner, and G. Abstreiter, “Excitation efficiency of electrons and holes in forward and reverse biased epitaxially grown Er-doped Si diodes,” Appl. Phys. Lett. 78(2), 210–212 (2001). [CrossRef]
  8. M. Miritello, R. L. Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient Luminescence and Energy Transfer in Erbium Silicate Thin Films,” Adv. Mater. 19(12), 1582–1588 (2007). [CrossRef]
  9. A. Najar, J. Charrier, H. Ajlani, N. Lorrain, S. Haesaert, M. Oueslati, and L. Haji, “Optical gain at 1.53 μm in Er3+–Yb3+ co-doped porous silicon waveguides,” Mater. Sci. Eng. B 146(1-3), 260–263 (2008). [CrossRef]
  10. R. Clergereaux, D. Escaich, S. Martin, P. Raynaud, and F. Gaillard, “Carbon Layer as a New Material for Optics,” in New Materials for Microphotonics, edited by J. H. Shin, M. Brongersma, C. Buchal, and F. Priolo (Mater. Res. Soc. Symp. Proc. 817, Warrendale, PA, 2004), paper L6.23.
  11. L. Winkless, R. H. C. Tan, Y. Zheng, M. Motevalli, P. B. Wyatt, and W. P. Gillin, “Quenching of Er(III) luminescence by ligand C–H vibrations: Implications for the use of erbium complexes in telecommunications,” Appl. Phys. Lett. 89(11), 111115 (2006). [CrossRef]
  12. Y. Yan, A. J. Faber, and H. de Waal, “Luminescence quenching by OH groups in highly Er-doped phosphate glasses,” J. Non-Cryst. Solids 181(3), 283–290 (1995). [CrossRef]
  13. J.-M. P. Delavaux, S. Granlund, O. Mizuhara, L. D. Tzeng, D. Barbier, M. Rattay, F. Saint André, and A. Kevorkian, “Integrated optics erbium-ytterbium amplifier system in 10-Gb/s fiber transmission experiment,” IEEE Photon. Technol. Lett. 9, 247–249 (1997). [CrossRef]
  14. G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79(3), 1258–1266 (1996). [CrossRef]
  15. F. Priolo, G. Franzò, D. Pacific, V. Vinciguerra, F. Iacona, and A. Irrera, “Role of the energy transfer in the optical properties of undoped and Er-doped interacting Si nanocrystals,” J. Appl. Phys. 89(1), 264–272 (2001). [CrossRef]
  16. V. Prajzlera, I. Huttel, P. Nekvindova, J. Schrfel, A. Mackova, and J. Gurovic, “Erbium doping into thin carbon optical layers,” Thin Solid Films 433(1-2), 363–366 (2003). [CrossRef]
  17. G. A. Crosby and M. Kasha, “Intramolecular energy transfer in ytterbium organic chelates,” Spectrochim. Acta [A] 10, 377–382 (1958).
  18. R. E. Whan and G. A. Crosby, “Luminescence studies of rare earth complexes: Benzoylacetonate and dibenzoylmethide chelates,” J. Mol. Spectrosc. 8(1-6), 315–327 (1962). [CrossRef]
  19. M. Kleinerman, “Energy Migration in Lanthanide Chelates,” Bull. Am. Phys. Sot. 9, 265 (1964), J. Chem. Phys. 51(6), 2370 (1969). [CrossRef]
  20. O. H. Park, S. Y. Seo, B. S. Bae, and J. H. Shin, “Indirect excitation of Er3+ in sol-gel hybrid films doped with an erbium complex,” Appl. Phys. Lett. 82(17), 2787–2789 (2003). [CrossRef]
  21. J. E. Sicre, J. T. Dubois, K. J. Eisentraut, and R. E. Sievers, “Volatile lanthanide chelates. II. Vapor pressures, heats of vaporization, and heats of sublimation,” J. Am. Chem. Soc. 91(13), 3476–3481 (1969). [CrossRef]
  22. N. I. Giricheva, N. V. Belova, S. A. Shlykov, G. V. Girichev, N. Vogt, N. V. Tverdova, and J. Vogt, “Molecular structure of tris(dipivaloylmethanato)lanthanum(III) studied by gas electron diffraction,” J. Mol. Struct. 605(2-3), 171–176 (2002). [CrossRef]
  23. D. B. Beach, R. T. Collions, F. K. Legoues, and J. O. Chu, “Erbium-Doped Silicon Prepared by UHV/CVD,” in Chemical Perspectives of Microelectronic Materials III, edited by C.R. Abernathy, C.W. Bates, Jr., D.A. Bohling, and W.S. Hobson (Mater. Res. Soc. Symp. Proc. 282, Pittsburgh, PA, 1993) 397–402.
  24. E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater. 5(3), 159–167 (1996). [CrossRef]
  25. G. Speranza, L. Calliari, M. Ferrari, A. Chiasera, K. Tran Ngoc, A. M. Baranov, V. V. Sleptsov, A. A. Nefedov, A. E. Varfolomeev, and S. S. Fanchenko, “Erbium-doped thin amorphous carbon films prepared by mixed CVD sputtering,” Appl. Surf. Sci. 238(1-4), 117–120 (2004). [CrossRef]
  26. Y. Haas, G. Stein, and E. Wurzberg, “Radiationless transitions in solutions: Isotope and proximity effects on Dy3+ by C-H and C-N bonds,” J. Chem. Phys. 60, 258–263 (1974). [CrossRef]
  27. W. Siebrand, “Radiationless Transitions in Polyatomic Molecules. I. Calculation of Franck—Condon Factors,” J. Chem. Phys. 46(2), 440–448 (1967). [CrossRef]
  28. R. V. Kruzelecky, S. Zukotynski, C. I. Ukah, F. Gaspari, and J. M. Perz, “The preparation of amorphous Si:H thin films for optoelectronic applications by glow discharge dissociation of SiH4 using a direct-current saddle-field plasma chamber,” J. Vac. Sci. Technol. A 7(4), 2632 (1989). [CrossRef]
  29. P. K. Lim, F. Gaspari, and S. Zukotynski, “Structural properties of a-C:H deposited using saddle-field glow-discharge decomposition of methane,” J. Appl. Phys. 78(9), 5307 (1995). [CrossRef]
  30. J. Franks, “Atom beam source,” Vacuum 34(1-2), 259–261 (1984). [CrossRef]
  31. D. Shirley, “High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold,” Phys. Rev. B 5(12), 4709–4714 (1972). [CrossRef]
  32. J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray Photoemission Spectroscopy, Physical Electronics Division (Perkin-Elmer, Eden Prairie, 1995).
  33. N. Guerfi, T. A. Nguyen Tan, J. Y. Veuillen, and D. B. Lollman, “Oxidation of thin ErSi1.7 overlayers on Si(111),” Appl. Surf. Sci. 56, 501–506 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited