OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 23 — Nov. 9, 2009
  • pp: 21108–21117

Extremely low power optical bistability in silicon demonstrated using 1D photonic crystal nanocavity

Laurent-Daniel Haret, Takasumi Tanabe, Eiichi Kuramochi, and Masaya Notomi  »View Author Affiliations

Optics Express, Vol. 17, Issue 23, pp. 21108-21117 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1541 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate optical bistability in silicon using a high-Q (Q>105) one-dimensional photonic crystal nanocavity at an extremely low 1.6 µW input power that is one tenth the previously reported value. Owing to the device’s unique geometrical structure, light and heat efficiently confine in a very small region, enabling strong thermo-optic confinement. We also showed with numerical analyses that this device can operate at a speed of ~0.5 µs.

© 2009 Optical Society of America

OCIS Codes
(160.6840) Materials : Thermo-optical materials
(190.1450) Nonlinear optics : Bistability
(140.3948) Lasers and laser optics : Microcavity devices
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: August 27, 2009
Revised Manuscript: November 1, 2009
Manuscript Accepted: November 1, 2009
Published: November 4, 2009

Laurent-Daniel Haret, Takasumi Tanabe, Eiichi Kuramochi, and Masaya Notomi, "Extremely low power optical bistability in silicon demonstrated using 1D photonic crystal nanocavity," Opt. Express 17, 21108-21117 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Mori, Y. Yamayoshi, and H. Kawaguchi, "Low switching-energy and high-repetition-frequency all optical flip-flop operations of a polarization bistable vertical-cavity surface-emitting laser," Appl. Phys. Lett. 88, 101102 (2006). [CrossRef]
  2. M. Hill, H. Dorren, T. de Vries, X. Leijtens, J. Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. Smit, "A fast low-power optical memory based on coupled micro-ring lasers" Nature 432, 206-209 (2004). [CrossRef] [PubMed]
  3. A. Shinya, S. Mitsugi, T. Tanabe, M. Notomi, I. Yokohama, H. Takara, and S. Kawanishi, "All-optical flip flop circuit composed of coupled two-port resonant tunneling filter in two-dimensional photonic crystal slab," Opt. Express 14, 1230-1235 (2006). http://www.opticsinfobase.org/oe/abstract.cfm?URI= oe-14-3-1230 [CrossRef] [PubMed]
  4. H. Gibbs, Optical Bistability: Controlling Light with Light (Academic Press, Orlando, 1985).
  5. H. Tsuda and T. Kurokawa, "Construction of an all-optical flip-flop by combination of two optical triodes," Appl. Phys. Lett. 57, 1724 (1990). [CrossRef]
  6. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching action of Si high-Q photonic-crystal nanocavities," Opt. Express 13, 2678-2687 (2005). http://www. opticsinfobase.org/oe/abstract.cfm?URI=oe-13-7-2678 [CrossRef] [PubMed]
  7. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, "Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip," Opt. Lett. 30, 2575-2577 (2005). http://www.opticsinfobase. org/ol/abstract.cfm?URI=ol-30-19-2575 [CrossRef] [PubMed]
  8. Q. Xu and M. Lipson, "Carrier-induced optical bistability in silicon ring resonators," Opt. Lett. 31, 341-343 (2006). http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-3-341 [CrossRef] [PubMed]
  9. K. Nozaki and T. Baba, "Lasing characteristics with ultimate-small modal volume in point shift photonic crystal nanolasers," Appl. Phys. Lett. 88, 211101 (2006). [CrossRef]
  10. T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultra-small high-Q photonic-crystal nanocavity," Nat. Photonics 1, 49-52 (2007). [CrossRef]
  11. S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nat. Photonics 1, 449-458 (2007). [CrossRef]
  12. E. Weidner, S. Combrié, A. de Rossi, N. Tran, and S. Cassette, "Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity," Appl. Phys. Lett. 90, 101118 (2007). [CrossRef]
  13. M. Notomi, E. Kuramochi, and H. Taniyama, "Ultrahigh-Q nanocavity with 1D photonic gap," Opt. Express 16, 11095-11102 (2008). http://www.opticsinfobase.org/oe/abstract.cfm?URI= oe-16-15-11095 [CrossRef] [PubMed]
  14. A. Zain, N. Johnson, M. Sorel, and R. De La Rue, "Ultra high quality factor one dimensional photonic crystal/ photonic wire micro-cavities in silicon-on-insulator (SOI)," Opt. Express 16, 12084-12089 (2008). http: //www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-16-12084 [CrossRef] [PubMed]
  15. P. Deotare, M. McCutcheon, I. Frank, M. Khan, and M. Lončar, "High quality factor photonic crystal nanobeam cavities," Appl. Phys. Lett. 94, 121106 (2009). [CrossRef]
  16. M. Eichenfield, R. Camacho, J. Chan, K. Vahala, and O. Painter, "A picogram- and nanometer-scale photonic crystal opto-mechanical cavity," Nature 459, 550-555 (2009). [CrossRef] [PubMed]
  17. E. Kuramochi, H. Taniyama, K. Kawasaki, and M. Notomi, "Fabrication of ultrahigh-Q nanocavity with onedimensional photonic gap," in Extended Abstracts of 70th Autumn JSAP Meeting, (Jpn. Soc. Appl. Phys., Tokyo, 2009), 9p-B-14. (in Japanese)
  18. E. Kuramochi, NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi-shi, Kanagawa 243-0198, Japan, H. Taniyama, K. Kawasaki, and M. Notomi are preparing a manuscript to be called "Ultrahigh-Q nanocavity with 1D mode-gap barrier in silicon on insulator."
  19. P. Barclay, K. Srinivasan, and O. Painter, "Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper," Opt. Express 13, 801-820 (2005). http://www. opticsinfobase.org/oe/abstract.cfm?URI=oe-13-3-801 [CrossRef] [PubMed]
  20. T. Uesugi, B. Song, T. Asano, and S. Noda, "Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab," Opt. Express 14, 377-386 (2006). http://www. opticsinfobase.org/oe/abstract.cfm?URI=oe-14-1-377 [CrossRef] [PubMed]
  21. T. Tanabe, H. Taniyama, and M. Notomi, "Carrier diffusion and recombination in photonic crystal nanocavity optical switches," J. Lightwave Technol. 26, 1396-1403 (2008). [CrossRef]
  22. M. Watts, W. Zortman, D. Trotter, G. Nielson, D. Luck, and R. Young, "Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics," In Conference on Lasers and Electro-Optics / Quantum Electronics and Laser Science Conference (CLEO/QELS’09), CPDB10, Baltimore, May 31-June 5 (2009). [PubMed]
  23. S. Combrié, A. De Rossi, Q. Tran, and H. Benisty, "GaAs photonic crystal cavity with ultrahigh Q: Microwatt nonlinearity at 1.55 μm," Opt. Lett. 33, 1908-1910 (2008). http://www.opticsinfobase.org/ol/ abstract.cfm?URI=ol-33-16-1908 [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited