OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 23 — Nov. 9, 2009
  • pp: 21124–21133

Surface microstructuring of Ti plates by femtosecond lasers in liquid ambiences: a new approach to improving biocompatibility

Yang Yang, Jianjun Yang, Chunyong Liang, Hongshui Wang, Xiaonong Zhu, and Nan Zhang  »View Author Affiliations

Optics Express, Vol. 17, Issue 23, pp. 21124-21133 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (568 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Microstructuring of Ti plates with femtosecond laser pulses is investigated in three different liquids. In these ambiences, complex microstructures with voids and islands are produced on the sample surfaces, whose feature sizes are controlled by the laser parameters. Through adopting supersaturated Hydroxyapatite suspension with higher incident laser fluences, it is for the first time to observe the firm deposition of biocompatible elements Ca-P on the microstructures. At lower laser fluence, only porous structure is present but without additional elements deposition. Both plasma-related ablation under the confinement of liquids and micro-bubbles striking are employed to discuss such structures formation. Tight combining elements Ca-P onto the structured surfaces provide a new way to improve the biocompatibility of body-embedded devices.

© 2009 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(140.7090) Lasers and laser optics : Ultrafast lasers
(220.4000) Optical design and fabrication : Microstructure fabrication

ToC Category:
Laser Microfabrication

Original Manuscript: September 16, 2009
Revised Manuscript: October 25, 2009
Manuscript Accepted: October 27, 2009
Published: November 5, 2009

Virtual Issues
Vol. 4, Iss. 13 Virtual Journal for Biomedical Optics

Yang Yang, Jianjun Yang, Chunyong Liang, Hongshui Wang, Xiaonong Zhu, and Nan Zhang, "Surface microstructuring of Ti plates by femtosecond lasers in liquid ambiences: a new approach to improving biocompatibility," Opt. Express 17, 21124-21133 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Yang, J. Yang, C. Liang, and H. Wang, “Ultra-broadband enhanced absorption of metal surfaces structured by femtosecond laser pulses,” Opt. Express 16(15), 11259–11265 (2008). [CrossRef] [PubMed]
  2. G. H. Welsh, N. T. Hunt, and K. Wynne, “Terahertz-pulse emission through laser excitation of surface plasmons in a metal grating,” Phys. Rev. Lett. 98(2), 026803 (2007). [CrossRef] [PubMed]
  3. W. Q. Han, L. Wu, R. F. Klie, and Y. Zhu, “Enhanced optical absorption induced by dense nanocavities inside titania nanorods,” Adv. Mater. 19(18), 2525–2529 (2007). [CrossRef]
  4. Y. B. Gerbig, S. I. U. Ahmed, D. G. Chetwynd, and H. Haefke, “Topography-related effects on the lubrication of nanostructured hard surfaces,” Tribol. Int. 39(9), 945–952 (2006). [CrossRef]
  5. T. J. Webster and J. U. Ejiofor, “Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo,” Biomaterials 25(19), 4731–4739 (2004). [CrossRef] [PubMed]
  6. M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965). [CrossRef]
  7. A. Y. Vorobyev and C. Guo, “Femtosecond laser nanostructuring of metals,” Opt. Express 14(6), 2164–2169 (2006). [CrossRef] [PubMed]
  8. Q. Z. Zhao, S. Malzer, and L. J. Wang, “Formation of subwavelength periodic structures on tungsten induced by ultrashort laser pulses,” Opt. Lett. 32(13), 1932–1934 (2007). [CrossRef] [PubMed]
  9. Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003). [CrossRef]
  10. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003). [CrossRef] [PubMed]
  11. F. Keilmann and Y. H. Bai, “Periodic surface structures frozen into CO2 laser- melted quartz,” Appl. Phys., A Mater. Sci. Process. 29(1), 9–18 (1982). [CrossRef]
  12. P. P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. S. Taylor, P. B. Corkum, D. M. Rayner, and V. R. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. At. Mol. Opt. Phys. 40(11), S273–S282 (2007). [CrossRef]
  13. M. Shen, C. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85(23), 5694–5696 (2004). [CrossRef]
  14. Y. Yang, J. Yang, C. Liang, H. Wang, X. Zhu, D. Kuang, and Y. Yang, “Sub-wavelength surface structuring of NiTi alloy by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 92(3), 635–642 (2008). [CrossRef]
  15. A. Y. Vorobyev, V. S. Makin, and C. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys. 101(3), 034903 (2007). [CrossRef]
  16. T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998). [CrossRef]
  17. M. Shen, C. Crouch, J. E. Carey, and E. Mazur, “Femtosecond laser-induced formation of submicrometer spikes on silicon in water,” Appl. Phys. Lett. 85(23), 5694–5696 (2004). [CrossRef]
  18. M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008). [CrossRef] [PubMed]
  19. K. Katayama, H. Yonekubo, and T. Sawada, “Formation of ring patterns surrounded by ripples by single- shot laser irradiation with ultrashort pulse width at the solid/liquid interface,” Appl. Phys. Lett. 82(24), 4244–4246 (2003). [CrossRef]
  20. G. Daminelli, J. Kruger, and W. Kautek, “Femtosecond laser interaction with silicon under water confinement,” Thin Solid Films 467(1-2), 334–341 (2004). [CrossRef]
  21. T. Sakka, S. Iwanaga, Y. H. Ogata, A. Matsunawa, and T. Takemoto, “Laser ablation at solid–liquid interfaces: An approach from optical emission spectra,” J. Chem. Phys. 112(19), 8645–8653 (2000). [CrossRef]
  22. S. Bharati, M. K. Sinha, and D. Basu, “Hydroxyapatite coating by biomimetic method on titanium alloy using concentrated SBF,” Bull. Mater. Sci. 28(6), 617–621 (2005). [CrossRef]
  23. X. L. Zhu, J. Chen, L. Scheideler, R. Reichl, and J. Geis-Gerstorfer, “Effects of topography and composition of titanium surface oxides on osteoblast responses,” Biomaterials 25(18), 4087–4103 (2004). [CrossRef] [PubMed]
  24. C. Aparicio, J. M. Manero, F. Conde, M. Pegueroles, J. A. Planell, M. Vallet-Regí, and F. J. Gil, “Acceleration of apatite nucleation on microrough bioactive titanium for bone-replacing implants,” J. Biomed. Mater. Res. A 82A(3), 521–529 (2007). [CrossRef]
  25. J. P. Sylvestre, A. V. Kabashin, E. Sacher, and M. Meunier, “Femtosecond laser ablation of gold in water: influence of the laser-produced plasma on the nanoparticle size distribution,” Appl. Phys., A Mater. Sci. Process. 80(4), 753–758 (2005). [CrossRef]
  26. R. M. Tilaki, A. Irajizad, and S. M. Mahdava, “The effect of liquid environment on size and aggregation of gold nanoparticles prepared by pulsed laser ablation,” J. Nanopart. Res. 9(5), 853–860 (2007). [CrossRef]
  27. D. Grojo, J. Hermann, and A. Perrone, “Plasma analyses during femtosecond laser ablation of Ti, Zr, and Hf,” J. Appl. Phys. 97(6), 063306 (2005). [CrossRef]
  28. A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100(3), 038102 (2008). [CrossRef] [PubMed]
  29. A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005). [CrossRef]
  30. J. Noack, D. Hammer, G. Noojin, B. Rockwell, and A. Vogel, “Influence of pulse duration on mechanical effects after laser-induced breakdown in water,” J. Appl. Phys. 83(12), 7488–7495 (1998). [CrossRef]
  31. P. V. Kazakevich, A. V. Simakin, and G. A. Shafeev, “Formation of periodic structures by laser ablation of metals in liquids,” Appl. Surf. Sci. 252(13), 4457–4461 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited