OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 23 — Nov. 9, 2009
  • pp: 21134–21148

Electroactive micro and nanowells for optofluidic storage

Bernardo Cordovez, Demetri Psaltis, and David Erickson  »View Author Affiliations


Optics Express, Vol. 17, Issue 23, pp. 21134-21148 (2009)
http://dx.doi.org/10.1364/OE.17.021134


View Full Text Article

Enhanced HTML    Acrobat PDF (1520 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper reports an optofluidic architecture which enables reversible trapping, detection and long term storage of spectrally multiplexed semiconductor quantum dot cocktails in electrokinetically active wells ranging in size from 200nm to 5μm. Here we describe the microfluidic delivery of these cocktails, fabrication method and principal of operation for the wells, and characterize the readout capabilities, storage and erasure speeds, internal spatial signal uniformity and potential storage density of the devices. We report storage and erase speeds of less than 153ms and 30ms respectively and the ability to provide 6-bit storage in a single 200nm well through spectral and intensity multiplexing. Furthermore, we present a novel method for enabling passive long term storage of the quantum dots in the wells by transporting them through an agarose gel matrix. We envision that this technique could find eventual application in fluidic memory or display devices.

© 2009 OSA

OCIS Codes
(210.4680) Optical data storage : Optical memories
(260.2510) Physical optics : Fluorescence
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Optoelectronics

History
Original Manuscript: July 7, 2009
Revised Manuscript: October 28, 2009
Manuscript Accepted: October 28, 2009
Published: November 5, 2009

Citation
Bernardo Cordovez, Demetri Psaltis, and David Erickson, "Electroactive micro and nanowells for optofluidic storage," Opt. Express 17, 21134-21148 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-23-21134


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. Vlassiouk and Z. S. Siwy, “Nanofluidic diode,” Nano Lett. 7(3), 552–556 (2007). [CrossRef] [PubMed]
  2. T. Thorsen, S. J. Maerkl, and S. R. Quake, “Microfluidic large-scale integration,” Science 298(5593), 580–584 (2002). [CrossRef] [PubMed]
  3. A. Groisman, M. Enzelberger, and S. R. Quake, “Microfluidic memory and control devices,” Science 300(5621), 955–958 (2003). [CrossRef] [PubMed]
  4. M. Prakash and N. Gershenfeld, “Microfluidic bubble logic,” Science 315(5813), 832–835 (2007). [CrossRef] [PubMed]
  5. E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C. H. Chang, “Near-Field Magnetooptics and High-Density Data-Storage,” Appl. Phys. Lett. 61(2), 142–144 (1992). [CrossRef]
  6. L. Dhar, K. Curtis, and T. Facke, “Holographic data storage: Coming of age,” Nat. Photonics 2(7), 403–405 (2008). [CrossRef]
  7. H. J. Coufal, D. Psaltis, and G. Sincerbox, Holographic data storage (Springer, Berlin, 2000).
  8. X. Zhang and Z. W. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008). [CrossRef] [PubMed]
  9. D. Burgreen and F. R. Nakache, “Electrokinetic flow in ultrafine capillary slits,” J. Phys. Chem. 68(5), 1084–1091 (1964). [CrossRef]
  10. D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, “Nanofluidic tuning of photonic crystal circuits,” Opt. Lett. 31(1), 59–61 (2006). [CrossRef] [PubMed]
  11. M. Y. Gao, J. Q. Sun, E. Dulkeith, N. Gaponik, U. Lemmer, and J. Feldmann, “Lateral patterning of CdTe nanocrystal films by the electric field directed layer-by-layer assembly method,” Langmuir 18(10), 4098–4102 (2002). [CrossRef]
  12. Q. Sun, Y. A. Wang, L. S. Li, D. Y. Wang, T. Zhu, J. Xu, C. H. Yang, and Y. F. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics 1(12), 717–722 (2007). [CrossRef]
  13. J. Heikenfeld, K. Zhou, E. Kreit, B. Raj, S. Yang, B. Sun, A. Milarcik, L. Clapp, and R. Schwartz, “Electrofluidic displays using Young-Laplace transposition of brilliant pigment dispersions,” Nat. Photonics 3(5), 292–296 (2009). [CrossRef]
  14. A. C. Siegel, S. T. Phillips, B. J. Wiley, and G. M. Whitesides, “Thin, lightweight, foldable thermochromic displays on paper,” Lab Chip 9(19), 2775 (2009). [CrossRef] [PubMed]
  15. J. Li, Q. Zhang, N. Peng, and Q. Zhu, “Manipulation of carbon nanotubes using AC dielectrophoresis,” Appl. Phys. Lett. 86(15), 153116 (2005). [CrossRef]
  16. M. L. Y. Sin, V. Gau, J. C. Liao, D. A. Haake, and P. K. Wong, “Active Manipulation of Quantum Dots using AC Electrokinetics,” J. Phys. Chem. C 113(16), 6561–6565 (2009). [CrossRef]
  17. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006). [CrossRef] [PubMed]
  18. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007). [CrossRef]
  19. B. Cordovez, D. Psaltis, and D. Erickson, “Trapping and storage of particles in electroactive microwells,” Appl. Phys. Lett. 90(2), 024102 (2007). [CrossRef]
  20. A. K. Gooding, D. E. Gómez, and P. Mulvaney, “The effects of electron and hole injection on the photoluminescence of CdSe/CdS/ZnS nanocrystal monolayers,” ACS Nano 2(4), 669–676 (2008). [CrossRef] [PubMed]
  21. M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281(5385), 2013–2016 (1998). [CrossRef] [PubMed]
  22. D. Erickson, “Spectrographic microfluidic memory,” in Proc. ICMM(Canada, 2005).
  23. M. Y. Han, X. H. Gao, J. Z. Su, and S. Nie, “Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules,” Nat. Biotechnol. 19(7), 631–635 (2001). [CrossRef] [PubMed]
  24. S. Chang, M. Zhou, and C. Grover, “Information coding and retrieving using fluorescent semiconductor nanocrystals for object identification,” Opt. Express 12(1), 143–148 (2004). [CrossRef] [PubMed]
  25. M. Mansuripur, A. R. Zakharian, A. Lesuffleur, S.-H. Oh, R. J. Jones, N. C. Lindquist, H. Im, A. Kobyakov, and J. V. Moloney, “Plasmonic nano-structures for optical data storage,” Opt. Express 17(16), 14001–14014 (2009). [CrossRef] [PubMed]
  26. P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009). [CrossRef] [PubMed]
  27. C. Chen, S. L. Liu, R. Cui, B. H. Huang, Z. Q. Tian, P. Jiang, D. W. Pang, and Z. L. Zhang, “Diffusion Behaviors of Water-Soluble CdSe/ZnS Core/Shell Quantum Dots Investigated by Single-Particle Tracking,” J. Phys. Chem. C 112, 18904–18910 (2008).
  28. J. Narayanan, J.-Y. Xiong, and X.-Y. Liu, “Determination of agarose gel pore size: Absorbance measurements vis a vis other techniques,” Journal of Physics: Conference Series 28, 83–86 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (2664 KB)     
» Media 2: MOV (2737 KB)     
» Media 3: MOV (815 KB)     
» Media 4: PDF (1131 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited