OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 23 — Nov. 9, 2009
  • pp: 21149–21158

Direct studies of liquid flows near solid surfaces by total internal reflection fluorescence cross-correlation spectroscopy

Stoyan Yordanov, Andreas Best, Hans-Jürgen Butt, and Kaloian Koynov  »View Author Affiliations


Optics Express, Vol. 17, Issue 23, pp. 21149-21158 (2009)
http://dx.doi.org/10.1364/OE.17.021149


View Full Text Article

Enhanced HTML    Acrobat PDF (1021 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a new method to study flow of liquids near solid surface: Total internal reflection fluorescence cross-correlation spectroscopy (TIR-FCCS). Fluorescent tracers flowing with the liquid are excited by evanescent light, produced by epi-illumination through the periphery of a high numerical aperture oil-immersion objective. The time-resolved fluorescence intensity signals from two laterally shifted observation volumes, created by two confocal pinholes are independently measured. The cross-correlation of these signals provides information of the tracers’ velocities. By changing the evanescent wave penetration depth, flow profiling at distances less than 200 nm from the interface can be performed. Due to the high sensitivity of the method fluorescent species with different size, down to single dye molecules can be used as tracers. We applied this method to study the flow of aqueous electrolyte solutions near a smooth hydrophilic surface and explored the effect of several important parameters, e.g. tracer size, ionic strength, and distance between the observation volumes.

© 2009 OSA

OCIS Codes
(120.7250) Instrumentation, measurement, and metrology : Velocimetry
(300.2530) Spectroscopy : Fluorescence, laser-induced
(300.6490) Spectroscopy : Spectroscopy, surface

ToC Category:
Spectroscopy

History
Original Manuscript: July 16, 2009
Revised Manuscript: October 12, 2009
Manuscript Accepted: October 14, 2009
Published: November 5, 2009

Citation
Stoyan Yordanov, Andreas Best, Hans-Jürgen Butt, and Kaloian Koynov, "Direct studies of liquid flows near solid surfaces by total internal reflection fluorescence cross-correlation spectroscopy," Opt. Express 17, 21149-21158 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-23-21149


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Tabeling, Introduction to Microfluidics (Oxford University Press, 2006).
  2. O. I. Vinogradova, “Slippage of water over hydrophobic surfaces,” Int. J. Miner. Process. 56(1-4), 31–60 (1999). [CrossRef]
  3. J. S. Ellis and M. Thompson, “Slip and coupling phenomena at the liquid-solid interface,” PCCP 6, 4928 (2004). [CrossRef]
  4. C. Neto, D. R. Evans, E. Bonaccurso, H.-J. Butt, and V. S. J. Craig, “Boundary slip in Newtonian liquids: a review of experimental studies,” Rep. Prog. Phys. 68(12), 2859–2897 (2005). [CrossRef]
  5. E. Lauga, M. P. Brenner, and H. A. Stone, “Microfluidics: The No-Slip Boundary Condition,” in Handbook of Experimental Fluid Dynamics, J. Foss, C. Tropea, and A. Yarin, eds. (Springer, New-York, 2007), pp. 1219–1240.
  6. E. Bonaccurso, M. Kappl, and H.-J. Butt, “Hydrodynamic force measurements: boundary slip of water on hydrophilic surfaces and electrokinetic effects,” Phys. Rev. Lett. 88(7), 076103 (2002). [CrossRef] [PubMed]
  7. R. Stark, E. Bonaccurso, M. Kappl, and H. J. Butt, “Quasi-static and hydrodynamic interaction between solid surfaces in polyisoprene studied by atomic force microscopy,” Polymer (Guildf.) 47(20), 7259–7270 (2006). [CrossRef]
  8. G. Sun, E. Bonaccurso, V. Franz, and H.-J. Butt, “Confined liquid: simultaneous observation of a molecularly layered structure and hydrodynamic slip,” J. Chem. Phys. 117(22), 10311 (2002). [CrossRef]
  9. S. Guriyanova and E. Bonaccurso, “Influence of wettability and surface charge on the interaction between an aqueous electrolyte solution and a solid surface,” Phys. Chem. Chem. Phys. 10(32), 4871–4878 (2008). [CrossRef] [PubMed]
  10. F. Feuillebois, M. Z. Bazant, and O. I. Vinogradova, “Effective Slip over Superhydrophobic Surfaces in Thin Channels,” Phys. Rev. Lett. 102(2), 026001 (2009). [CrossRef] [PubMed]
  11. R. Pit, H. Hervet, and L. Leger, “Direct experimental evidence of slip in hexadecane: solid interfaces,” Phys. Rev. Lett. 85(5), 980–983 (2000). [CrossRef] [PubMed]
  12. D. C. Tretheway and C. D. Meinhart, “Apparent fluid slip at hydrophobic microchannel walls,” Phys. Fluids 14(3), L9–L12 (2002). [CrossRef]
  13. P. Joseph and P. Tabeling, “Direct measurement of the apparent slip length,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 035303 (2005). [CrossRef] [PubMed]
  14. P. Huang, J. S. Guasto, and K. S. Breuer, “Direct measurement of slip velocities using three-dimensional total internal reflection velocimetry,” J. Fluid Mech. 566, 447–464 (2006). [CrossRef]
  15. C. I. Bouzigues, P. Tabeling, and L. Bocquet, “Nanofluidics in the debye layer at hydrophilic and hydrophobic surfaces,” Phys. Rev. Lett. 101(11), 114503 (2008). [CrossRef] [PubMed]
  16. L. Brigo, M. Natali, M. Pierno, F. Mammano, C. Sada, G. Fois, A. Pozzato, S. dal Zilio, M. Tormen, and G. Mistura, “Water slip and friction at a solid surface,” J. Phys. Condens. Matter 20(35), 354016 (2008). [CrossRef]
  17. R. Rigler, and E. S. Elson, Fluorescence Correlation Spectroscopy (Springer-Verlag, New York, 2001).
  18. D. Magde, W. W. Webb, and E. L. Elson, “Fluorescence Correlation Spectroscopy. 3. Uniform Translation and Laminar-Flow,” Biopolymers 17(2), 361–376 (1978). [CrossRef]
  19. A. Van Orden and R. A. Keller, “Fluorescence correlation spectroscopy for rapid multicomponent analysis in a capillary electrophoresis system,” Anal. Chem. 70(21), 4463–4471 (1998). [CrossRef] [PubMed]
  20. R. H. Köhler, P. Schwille, W. W. Webb, and M. R. Hanson, “Active protein transport through plastid tubules: velocity quantified by fluorescence correlation spectroscopy,” J. Cell Sci. 113(Pt 22), 3921–3930 (2000). [PubMed]
  21. M. Gösch, H. Blom, J. Holm, T. Heino, and R. Rigler, “Hydrodynamic flow profiling in microchannel structures by single molecule fluorescence correlation spectroscopy,” Anal. Chem. 72(14), 3260–3265 (2000). [CrossRef] [PubMed]
  22. M. Brinkmeier, K. Dorre, J. Stephan, and M. Eigen, “Two beam cross correlation: A method to characterize transport phenomena in micrometer-sized structures,” Anal. Chem. 71(3), 609–616 (1999). [CrossRef] [PubMed]
  23. P. S. Dittrich and P. Schwille, “Spatial two-photon fluorescence cross-correlation spectroscopy for controlling molecular transport in microfluidic structures,” Anal. Chem. 74(17), 4472–4479 (2002). [CrossRef] [PubMed]
  24. D. Lumma, A. Best, A. Gansen, F. Feuillebois, J. O. Rädler, and O. I. Vinogradova, “Flow profile near a wall measured by double-focus fluorescence cross-correlation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(5), 056313 (2003). [CrossRef] [PubMed]
  25. O. I. Vinogradova, K. Koynov, A. Best, and F. Feuillebois, “Direct Measurements of Hydrophobic Slippage Using Double-Focus Fluorescence Cross-Correlation,” Phys. Rev. Lett. 102(11), 118302 (2009). [CrossRef] [PubMed]
  26. D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng. 13(1), 247–268 (1984). [CrossRef] [PubMed]
  27. K. Hassler, M. Leutenegger, P. Rigler, R. Rao, R. Rigler, M. Gösch, and T. Lasser, “Total internal reflection fluorescence correlation spectroscopy (TIR-FCS) with low background and high count-rate per molecule,” Opt. Express 13(19), 7415–7423 (2005). [CrossRef] [PubMed]
  28. J. Ries, E. P. Petrov, and P. Schwille, “Total internal reflection fluorescence correlation spectroscopy: effects of lateral diffusion and surface-generated fluorescence,” Biophys. J. 95(1), 390–399 (2008). [CrossRef] [PubMed]
  29. J. N. Israelachvili, Intermolecular and Surface Forces (Academic Press, London, 1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited