OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 23 — Nov. 9, 2009
  • pp: 21222–21227

Strong tunable slow and fast lights using a gain-clamped semiconductor optical amplifier

S. H. Moon, J. Park, J. M. Oh, N. J. Kim, D. Lee, S. W. Chang, D. Nielsen, and S. L. Chuang  »View Author Affiliations


Optics Express, Vol. 17, Issue 23, pp. 21222-21227 (2009)
http://dx.doi.org/10.1364/OE.17.021222


View Full Text Article

Enhanced HTML    Acrobat PDF (217 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Previously demonstrated slow light is still far from applications, particularly due to the limited bandwidth and control speed. Although semiconductor-based slow light has the high bandwidth and sub-nanosecond control speed, slow light was observed only in the absorption regime with attenuation, while fast light observed in the gain regime with amplification. The large power difference in two regimes makes the use of the optical delay impractical. We report novel slow light in the gain regime, with a high power comparable to that of fast light, utilizing the anomalous gain characteristic in a gain-clamped semiconductor optical amplifier. The slow light is tunable to fast light with the current as the only variable. Additional high speed operation, fast delay control, and wide range of operation wavelength make the present approach practical.

© 2009 OSA

OCIS Codes
(270.1670) Quantum optics : Coherent optical effects
(230.4480) Optical devices : Optical amplifiers

ToC Category:
Slow and Fast Light

History
Original Manuscript: September 14, 2009
Revised Manuscript: October 28, 2009
Manuscript Accepted: November 3, 2009
Published: November 6, 2009

Citation
S. H. Moon, J. Park, J. M. Oh, N. J. Kim, D. Lee, S. W. Chang, D. Nielsen, and S. L. Chuang, "Strong tunable slow and fast lights using
 a gain-clamped semiconductor optical amplifier," Opt. Express 17, 21222-21227 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-23-21222


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999). [CrossRef]
  2. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003). [CrossRef] [PubMed]
  3. K. Y. Song, M. G. Herráez, and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13(1), 82–88 (2005). [CrossRef] [PubMed]
  4. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005). [CrossRef] [PubMed]
  5. L. Thévenaz, “Slow and fast light in optical fibers,” Nat. Photonics 2(8), 474–481 (2008). [CrossRef]
  6. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008). [CrossRef]
  7. P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang, and S. L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29(19), 2291–2293 (2004). [CrossRef] [PubMed]
  8. H. Su and S. L. Chuang, “Room temperature slow and fast light in quantum-dot semiconductor optical amplifiers,” Appl. Phys. Lett. 88(6), 061102 (2006). [CrossRef]
  9. H. Su, P. Kondratko, and S. L. Chuang, “Variable optical delay using population oscillation and four-wave-mixing in semiconductor optical amplifiers,” Opt. Express 14(11), 4800–4807 (2006). [CrossRef] [PubMed]
  10. A. Matsudaira, D. Lee, P. Kondratko, D. Nielsen, S. L. Chuang, N. J. Kim, J. M. Oh, S. H. Pyun, W. G. Jeong, and J. W. Jang, “Electrically tunable slow and fast lights in a quantum-dot semiconductor optical amplifier near 1.55 µm,” Opt. Lett. 32(19), 2894–2896 (2007). [CrossRef] [PubMed]
  11. L. Pleumeekers, M. A. Dupertuis, T. Hessler, P. E. Selbmann, S. Haacke, and B. Deveaud, “Longitudinal spatial hole burning and associated nonlinear gain in gain-clamped semiconductor optical amplifiers,” IEEE J. Quantum Electron. 34(5), 879–886 (1998). [CrossRef]
  12. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007). [CrossRef]
  13. J. M. Oh, H. B. Choi, D. Lee, and S. J. Ahn, “Incorporation of a fiber Bragg grating to improve the efficiency of a 1580-nm-band tunable fiber ring laser,” Opt. Lett. 27(8), 589–591 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited