OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 23 — Nov. 9, 2009
  • pp: 21228–21239

Understanding near/far-field engineering of optical dimer antennas through geometry modification

W. Ding, R. Bachelot, R. Espiau de Lamaestre, D. Macias, A.-L. Baudrion, and P. Royer  »View Author Affiliations


Optics Express, Vol. 17, Issue 23, pp. 21228-21239 (2009)
http://dx.doi.org/10.1364/OE.17.021228


View Full Text Article

Enhanced HTML    Acrobat PDF (541 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Numerical investigations based on the boundary element method (BEM) have been carried out to two-dimensional (2-D) silver dimer nano-antennas of various geometries. The near-field and far-field properties are mainly determined by the local geometry at the gap and the global shape of the antenna shafts respectively. A hybrid dimer antenna, which mixes the geometry ingredients of the rod dimer and the bowtie, benefits in both near and far field. Using a microcavity representation, the resonance in dimer nano-antennas is explained in a common and semi-analytical manner. The plasmonic enhancement and the wavelength mismatching in the optical dimer antenna are naturally embodied in this model. The quality factor of the resonance, which can be influenced by the wavelength and the geometry, is discussed intuitively. The understanding presented in this work could guide the future engineering of the optical dimer antenna.

© 2009 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.5740) Physical optics : Resonance
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

History
Original Manuscript: September 16, 2009
Revised Manuscript: October 20, 2009
Manuscript Accepted: October 23, 2009
Published: November 6, 2009

Citation
W. Ding, R. Bachelot, R. Espiau de Lamaestre, D. Macias, A.-L. Baudrion, and P. Royer, "Understanding near/far-field engineering of optical dimer antennas through geometry modification," Opt. Express 17, 21228-21239 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-23-21228


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(33 Pt B), 4318–4324 (2000). [CrossRef] [PubMed]
  2. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006). [CrossRef] [PubMed]
  3. T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28–33 (2007). [CrossRef] [PubMed]
  4. J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95(1), 017402 (2005). [CrossRef] [PubMed]
  5. P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005). [CrossRef] [PubMed]
  6. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005). [CrossRef] [PubMed]
  7. P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008). [CrossRef] [PubMed]
  8. R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70(11), 1354–1356 (1997). [CrossRef]
  9. A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005). [CrossRef]
  10. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003). [CrossRef]
  11. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003). [CrossRef] [PubMed]
  12. N. Engheta, A. Salandrino, and A. Alù, “Circuit elements at optical frequencies: Nanoinductors, Nanocapacitors, and Nanoresistors,” Phys. Rev. Lett. 95(9), 095504 (2005). [CrossRef] [PubMed]
  13. A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2, 1–4 (2008). [CrossRef]
  14. J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71(23), 235420 (2005). [CrossRef]
  15. H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16(12), 9144–9154 (2008), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-16-12-9144 . [CrossRef] [PubMed]
  16. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007). [CrossRef] [PubMed]
  17. A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005). [CrossRef] [PubMed]
  18. L. Douillard, F. Charra, Z. Korczak, R. Bachelot, S. Kostcheev, G. Lerondel, P. M. Adam, and P. Royer, “Short range Plasmon resonators probed by photoemission electron microscopy,” Nano Lett. 8(3), 935–940 (2008). [CrossRef] [PubMed]
  19. M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics 3(5), 287–291 (2009). [CrossRef]
  20. I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García De Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14(21), 9988–9999 (2006), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-14-21-9988 . [CrossRef] [PubMed]
  21. A. W. Snyder, and J. D. Love, Optical waveguide theory, Chapman and Hall Publisher (1983).
  22. Kh. V. Nerkararyan, “Superfocusing of a surface polariton in a wedge-like structure,” Phys. Lett. A 237(1-2), 103–105 (1997). [CrossRef]
  23. W. Ding, S. R. Andrews, and S. A. Maier, “Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Phys. Rev. A 75(6), 063822 (2007). [CrossRef]
  24. S. A. Maier, Plasmonics: Fundamentals and Applications, Springer: New York (2007).
  25. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices Part 1: Adiabaticity criteria,” IEE Proc. 138, 343–354 (1991).
  26. F. J. García de Abajo and A. Howie, “Relativistic electron energy loss and electron induced photon emission in inhomogeneous dielectrics,” Phys. Rev. Lett. 80(23), 5180–5183 (1998). [CrossRef]
  27. C. I. Valencia, E. R. Mendez, and B. S. Mendoza, “Second-harmonic generation in the scattering of light by two-dimensional particles,” J. Opt. Soc. Am. B 20(10), 2150–2161 (2003). [CrossRef]
  28. J. W. Liaw, “Simulation of surface plasmon resonance of metallic nanoparticles by the boundary-element method,” J. Opt. Soc. Am. A 23(1), 108–116 (2006). [CrossRef]
  29. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  30. J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64(23), 235402 (2001). [CrossRef]
  31. F. J. G. de Abajo, “Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimmers, and waveguides,” J. Phys. Chem. C 112(46), 17983–17987 (2008). [CrossRef]
  32. L. Novotny, and B. Hecht, Principles of Nano-Optics, Cambridge University Press (2006).
  33. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003). [CrossRef] [PubMed]
  34. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Second Edition), Artech House: Boston (1997). Optiwave OptiFDTD 6.0

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited