OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 23 — Nov. 9, 2009
  • pp: 21302–21312

Mode expansion and Bragg filtering for a high-fidelity fiber-based photon-pair source

Alexander Ling, Jun Chen, Jingyun Fan, and Alan Migdall  »View Author Affiliations


Optics Express, Vol. 17, Issue 23, pp. 21302-21312 (2009)
http://dx.doi.org/10.1364/OE.17.021302


View Full Text Article

Enhanced HTML    Acrobat PDF (183 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the development of a fiber-based single spatial-mode source of photon-pairs where the efficiency of extracting photon-pairs is increased through the use of fiber-end expansion and Bragg filters. This improvement in efficiency enabled a spectrally bright and pure photon-pair source having a small second-order correlation function (0.03) and a raw spectral brightness of 44,700 pairs s-1nm-1mW-1. The source can be configured to generate entangled photon-pairs, characterized via optimal and minimal quantum state tomography, to have a fidelity of 97% and tangle of 92%, without subtracting any background.

© 2009 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics

ToC Category:
Nonlinear Optics

History
Original Manuscript: August 19, 2009
Revised Manuscript: September 28, 2009
Manuscript Accepted: October 1, 2009
Published: November 6, 2009

Citation
Alexander Ling, Jun Chen, Jingyun Fan, and Alan Migdall, "Mode expansion and Bragg filtering for a high-fidelity fiber-based photon-pair Source," Opt. Express 17, 21302-21312 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-23-21302


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. C. Burnham and D. L. Weinberg, "Observation of Simultaneity in Parametric Production of Optical Photon Pairs," Phys. Rev. Lett. 25, 84-87 (1970). [CrossRef]
  2. C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, "High-efficiency entangled photon pair collection in type-II parametric fluorescence," Phys. Rev. A 64, 023802 (2001). [CrossRef]
  3. A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, "A wavelength-tunable fiber-coupled source of narrowband entangled photons," Opt. Express 15, 15377-15386 (2007). [CrossRef] [PubMed]
  4. A. B. U’Ren, C. Silberhorn, K. Banaszek, and I. A.Walmsley, "Efficient Conditional Preparation of High-Fidelity Single Photon States for Fiber-Optic Quantum Networks," Phys. Rev. Lett. 93, 093601 (2004). [CrossRef] [PubMed]
  5. M. Fiorentino, S. M. Spillane, R. G. Beausoleil, T. D. Roberts, P. Battle, and M. W. Munro, "Spontaneous parametric down-conversion in periodically poled KTP waveguides and bulk crystals," Opt. Express 15, 7479- 7488 (2007). [CrossRef] [PubMed]
  6. J. Chen, A. J. Pearlman, A. Ling, J. Fan, and A. Migdall, "A versatile waveguide source of photon pairs for chip-scale quantum information processing," Opt. Express 17, 6727-6740 (2009). [CrossRef] [PubMed]
  7. A. Christ, K. Laiho, A. Eckstein, T. Lauckner, P. J. Mosley, and C. Silberhorn, "Spatial modes in waveguided parametric downconversion," arXiv:0904.4668v1 (2009).
  8. M. Karpinski, C. Radzewicz, and K. Banaszek, "Experimental characterization of three-wave mixing in a multimode nonlinear KTiOPO 4 waveguide," Appl. Phys. Lett. 94181105 (2009). [CrossRef]
  9. M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, "All-Fiber Photon-Pair Source for Quantum Communications," IEEE Photon. Technol. Lett.983-985 (2002). [CrossRef]
  10. J. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, and P. St. J. Russell, "Photonic crystal fiber source of correlated photon pairs," Opt. Express 13, 534-544 (2005). [CrossRef] [PubMed]
  11. S. D. Dyer, B. Baek, and S. W. Nam, "High-brightness, low-noise, all-fiber photon pair source," Opt. Express 1710290-10297(2009). [CrossRef] [PubMed]
  12. J. Fan, A. Migdall, and L. J. Wang, "Efficient generation of correlated photon pairs in a microstructure fiber," Opt. Lett. 30, 3368-3370 (2005). [CrossRef]
  13. H. Takesue and K. Inoue, "1.5-m band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber," Opt. Express 13, 7832-7839 (2005). [CrossRef] [PubMed]
  14. J. Chen, K. F. Lee, C. Liang, and P. Kumar, "Fiber-based telecom-band degenerate-frequency source of entangled photon pairs," Opt. Lett. 31, 2798-2800 (2006). [CrossRef] [PubMed]
  15. K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, "Generation of high-purity telecom-band entangled photon pairs in dispersion-shifted fiber," Opt. Lett. 31, 1905-1907 (2006). [CrossRef] [PubMed]
  16. P. Russell, "Photonic Crystal Fibers," Science 299, 358-362 (2003). [CrossRef] [PubMed]
  17. J. Fan, M. D. Eisaman, and A. Migdall, "Bright phase-stable broadband fiber-based source of polarizationentangled photon pairs," Phy. Rev. A 76, 043836 (2007). [CrossRef]
  18. E. A. Goldschmidt, M. D. Eisaman, J. Fan, S. V. Polyakov, and A. Migdall, "Spectrally bright and broad fiberbased heralded single-photon source," Phys. Rev. A 78, 013844 (2008). [CrossRef]
  19. J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, "Nonclassical interference and Entanglement Generation Using a Photonic Crystal Fiber Pair Photon Source," Phys. Rev. Lett. 99, 120501 (2007). [CrossRef] [PubMed]
  20. J. Fulconis, O. Alibart, W. J. Wadsworth, P. St. J. Russell, and J. G. Rarity, "High brightness single mode source of correlated photon pairs using a photonic crystal fiber," Opt. Express 13, 7572-7582 (2005). [CrossRef] [PubMed]
  21. J. Chen, X. Li, and P. Kumar, "Two-photon-state generation via four-wave mixing in optical fibers," Phys. Rev. A 72, 033801 (2005). [CrossRef]
  22. J. Fan and A. Migdall, "A broadband high spectral brightness fiber-based two-photon source," Opt. Express 15, 2915-2920 (2007). [CrossRef] [PubMed]
  23. http://www.nktphotonics.com, Crystal Fibre A/S has been merged into NKT Photonics.
  24. Certain trade names and company products are mentioned in the text or identified in an illustration in order to specify adequately the experimental procedure and equipment used. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it necessarily imply that the products are the best available for the purpose.
  25. http://www.optigrate.com.
  26. I. Ciapurin, L. Glebov, V. Smirnov, "Practical Holography XIX:Materials and Applications. Eds: T. H. Jeong, H. Bjelkhagen", Proceedings of SPIE 5742, 183-194, (2005). [CrossRef]
  27. S. Jobling, K. T. McCusker, and P. G. Kwiat, "Adaptive Optics for Improved Mode-Coupling Efficiencies," in Poster JWA32, Frontiers in Optics (2008).
  28. R. Loudon, The Quantum Theory of Light (New York:Oxford University Press, 1983).
  29. S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, "High-quality asynchronous heralded single-photon source at telecom wavelength," New J. Phys. 6, 163 (2004). [CrossRef]
  30. http://www.nist.gov/fpga.
  31. J. Reháček, B.-G. Englert, and D. Kaszlikowski, "Minimal qubit tomography," Phys. Rev. A 70, 052321 (2004). [CrossRef]
  32. A. Ambirajan and D. C. Look, "Optimum angles for a polarimeter: part I," Opt. Eng. 34, (6), 1651 (1995). [CrossRef]
  33. A. Ambirajan and D. C. Look, "Optimum angles for a polarimeter: part II," Opt. Eng. 34, (6), 1656 (1995). [CrossRef]
  34. E. Hecht, Optics, 4th Edition (Addison Wesley, 2002).
  35. A. Ling, K. P. Soh, A. Lamas-Linares, and C. Kurtsiefer, "An optimal photon counting polarimeter," J. Mod. Opt. 56, 1523-1528 (2006). [CrossRef]
  36. A. Ling, K. P. Soh, A. Lamas-Linares, and C. Kurtsiefer, "Experimental polarization state tomography using optimal polarimeters," Phys. Rev. A 74, 022309 (2006). [CrossRef]
  37. J.-W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, "Experimental Entanglement Swapping: Entangling Photons That Never Interacted," Phys. Rev. Lett. 80, 3891-3894 (1998). [CrossRef]
  38. C. K. Hong, Z. Y. Ou, and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference," Phys. Rev. Lett. 59, 2044-2046 (1987). [CrossRef] [PubMed]
  39. P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, "Heralded Generation of Ultrafast Single Photons in Pure Quantum States," Phys. Rev. Lett. 100, 133601 (2008). [CrossRef] [PubMed]
  40. O. Cohen, J.S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, "Tailored photon-pair generation in optical fibers," Phys. Rev. Lett. 102, 123603 (2009). [CrossRef] [PubMed]
  41. K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, "Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber," Opt. Express 15, 14870-14886 (2007). [CrossRef] [PubMed]
  42. M. Halder, J. Fulconis, B. Cemlyn, A. Clark, C. Xiong,W. J. Wadsworth, and J. G. Rarity, "Nonclassical 2-photon interference with separated intrinsically narrowband fibre sources," Opt. Express 17, 4670-4676 (2009). [CrossRef] [PubMed]
  43. C. Soller, B. Brecht, P. J. Mosley, Z. Leyun, A. Podlipensky, N. Y. Joly, P. St. J. Russell, and C. Silberhorn, "Bridging Visible and Telecom Wavelengths with a Single-Mode Broadband Photon Pair Source," arXiv:0908.2932 (2009).
  44. J. Heersink, V. Josse, G. Leuchs, and U. L. Andersen, "Efficient polarization squeezing in optical fibers," Opt. Lett. 30, 1192-1194 (2005). [CrossRef] [PubMed]
  45. J. Milanovic, M. Lassen, U. L. Andersen, and G. Leuchs, "A Novel Method for Polarization Squeezing with Photonic Crystal Fibers," arXiv:0902.4597v1 (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited