OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 23 — Nov. 9, 2009
  • pp: 21313–21319

Propagation-dependent beam profile distortion associated with the Goos-Hanchen shift

Yuhang Wan, Zheng Zheng, and Jinsong Zhu  »View Author Affiliations


Optics Express, Vol. 17, Issue 23, pp. 21313-21319 (2009)
http://dx.doi.org/10.1364/OE.17.021313


View Full Text Article

Enhanced HTML    Acrobat PDF (190 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The propagation-dependent profile distortion of the reflected beam is studied via deriving the theoretical model of the optical field distribution in both the near and far field. It is shown that strong and fast-varying beam distortions can occur along the propagation path, compared to the profile on the reflecting surface. Numerical simulations for the case of a typical SPR configuration with a sharp angular response curve reveal that, when the phase distribution in the angular range covered by the input beam becomes nonlinear, previous theories based on the linear phase approximation fail to predict the Goos-Hanchen shift and its propagation-dependent variations precisely. Our study could shed light on more accurate modeling of the Goos-Hanchen effect’s impact on the relevant photonic devices and measurement applications.

© 2009 OSA

OCIS Codes
(240.0240) Optics at surfaces : Optics at surfaces
(240.6680) Optics at surfaces : Surface plasmons
(260.0260) Physical optics : Physical optics

ToC Category:
Optics at Surfaces

History
Original Manuscript: August 19, 2009
Revised Manuscript: October 11, 2009
Manuscript Accepted: October 12, 2009
Published: November 6, 2009

Citation
Yuhang Wan, Zheng Zheng, and Jinsong Zhu, "Propagation-dependent beam profile distortion associated with the Goos-Hanchen shift," Opt. Express 17, 21313-21319 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-23-21313


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Goos and H. Hanchen, “Ein neuer und fundamentaler Versuch zur Totalreflexion,” Ann. Phys. 436(7-8), 333–346 (1947). [CrossRef]
  2. O. C. de Beauregard and C. Imbert, “Quantized Longitudinal and Transverse Shifts Associated with Total Internal Reflection,” Phys. Rev. Lett. 28(18), 1211–1213 (1972). [CrossRef]
  3. C. K. Carniglia and K. R. Brownstein, “Focal shift and ray model for total internal reflection,” J. Opt. Soc. Am. 67, 121–122 (1977). [CrossRef]
  4. T. Tamir, “Nonspecular phenomena in beam fields reflected by multilayered media,” J. Opt. Soc. Am. A 3(4), 558–565 (1986). [CrossRef]
  5. K. Artmann, “Berechnung der Seitenversetzung des totalreflektieren Strahles,” Ann. Phys. 6, 87–102 (1948). [CrossRef]
  6. H. M. Lai and S. W. Chan, “Large and negative Goos-Hänchen shift near the Brewster dip on reflection from weakly absorbing media,” Opt. Lett. 27(9), 680–682 (2002). [CrossRef] [PubMed]
  7. I. V. Shadrivov, A. A. Zharov, and Y. S. Kivshar, “Giant Goos-Hanchen effect at the reflection from left-handed metamaterials,” Appl. Phys. Lett. 83(13), 2713–2715 (2003). [CrossRef]
  8. L.-G. Wang and S.-Y. Zhu, “Large positive and negative Goos-Hanchen shifts from a weakly absorbing left-handed slab,” J. Appl. Phys. 98(4), 043522–043524 (2005). [CrossRef]
  9. X. B. Yin, L. Hesselink, Z. W. Liu, N. Fang, and X. Zhang, “Large positive and negative lateral optical beam displacements due to surface plasmon resonance,” Appl. Phys. Lett. 85(3), 372–374 (2004). [CrossRef]
  10. L. Chen, Z. Q. Cao, F. Ou, H. G. Li, Q. S. Shen, and H. C. Qiao, “Observation of large positive and negative lateral shifts of a reflected beam from symmetrical metal-cladding waveguides,” Opt. Lett. 32(11), 1432–1434 (2007). [CrossRef] [PubMed]
  11. X. B. Yin and L. Hesselink, “Goos-Hanchen shift surface plasmon resonance sensor,” Appl. Phys. Lett. 89(26), 261108 (2006). [CrossRef] [PubMed]
  12. C. W. Chen, W. C. Lin, L. S. Liao, Z. H. Lin, H. P. Chiang, P. T. Leung, E. Sijercic, and W. S. Tse, “Optical temperature sensing based on the Goos-Hänchen effect,” Appl. Opt. 46(22), 5347–5351 (2007). [CrossRef] [PubMed]
  13. Y. Wang, H. Li, Z. Cao, T. Yu, Q. Shen, and Y. He, “Oscillating wave sensor based on the Goos-Hanchen effect,” Appl. Phys. Lett. 92(6), 061117 (2008). [CrossRef]
  14. C. F. Li and Q. Wang, “Prediction of simultaneously large and opposite generalized Goos-Hänchen shifts for TE and TM light beams in an asymmetric double-prism configuration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5), 055601 (2004). [CrossRef] [PubMed]
  15. A. Aiello and J. P. Woerdman, “Role of beam propagation in Goos-Hänchen and Imbert-Fedorov shifts,” Opt. Lett. 33(13), 1437–1439 (2008). [CrossRef] [PubMed]
  16. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007). [CrossRef] [PubMed]
  17. K. Johansen, R. Stalberg, I. Lundstrom, and B. Liedberg, “Surface plasmon resonance: instrumental resolution using photo diode arrays,” Meas. Sci. Technol. 11(11), 1630–1638 (2000). [CrossRef]
  18. T. Tamir and H. L. Bertoni, “Lateral Displacement of Optical Beams at Multilayered and Periodic Structures,” J. Opt. Soc. Am. 61(10), 1397–1413 (1971). [CrossRef]
  19. B. R. Horowitz and T. Tamir, “Lateral Displacement of a Light Beam at a Dielectric Interface,” J. Opt. Soc. Am. 61(5), 586–594 (1971). [CrossRef]
  20. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited