OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 24 — Nov. 23, 2009
  • pp: 21396–21407

Rapid Mueller matrix polarimetry based on parallelized polarization state generation and detection

Santosh Tripathi and Kimani C. Toussaint, Jr.  »View Author Affiliations


Optics Express, Vol. 17, Issue 24, pp. 21396-21407 (2009)
http://dx.doi.org/10.1364/OE.17.021396


View Full Text Article

Enhanced HTML    Acrobat PDF (341 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present rapid Mueller matrix polarimetry that can extract twelve Muller matrix elements from a single intensity image in real time and with high spatial resolution. This is achieved by parallelizing the respective polarization state generation and polarization state detection processes, which in existing polarimeters is performed sequentially. Parallelization of the polarization state generation process is accomplished through the use of vector beams, for which this work represents a new application domain. Polarization state detection is parallelized by uniquely combining a microscope/array detector setup with a specialized algorithm that simultaneously utilizes information from multiple spatial regions of the array detector. Simulated results applying this technique to two anisotropic samples including metamaterial yield material parameters that are consistent with those reported in the literature.

© 2009 OSA

OCIS Codes
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(180.0180) Microscopy : Microscopy
(310.3840) Thin films : Materials and process characterization
(160.3918) Materials : Metamaterials
(160.4236) Materials : Nanomaterials

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: September 11, 2009
Revised Manuscript: November 1, 2009
Manuscript Accepted: November 2, 2009
Published: November 9, 2009

Citation
Santosh Tripathi and Kimani C. Toussaint, "Rapid Mueller matrix polarimetry based on parallelized polarization state generation and detection," Opt. Express 17, 21396-21407 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-24-21396


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Chandola, K. Hinrichs, M. Gensch, N. Esser, S. Wippermann, W. G. Schmidt, F. Bechstedt, K. Fleischer, and J. F. McGilp, “Structure of Si(111)-in Nanowires determined from the Midinfrared Optical Response,” Phys. Rev. Lett. 102(22), 226805 (2009). [CrossRef] [PubMed]
  2. J. A. Fagan, J. R. Simpson, B. J. Landi, L. J. Richter, I. Mandelbaum, V. Bajpai, D. L. Ho, R. Raffaelle, A. R. H. Walker, B. J. Bauer, and E. K. Hobbie, “Dielectric response of aligned semiconducting single-wall nanotubes,” Phys. Rev. Lett. 98(14), 147402 (2007). [CrossRef] [PubMed]
  3. M. Gilliot, A. E. Naciri, L. Johann, J. P. Stoquert, J. J. Grob, and D. Muller, “Optical anisotropy of shaped oriented cobalt nanoparticles by generalized spectroscopic ellipsometry,” Phys. Rev. B 76(4), 045424 (2007). [CrossRef]
  4. Z. M. Huang, J. Q. Xue, Y. Hou, J. H. Chu, and D. H. Zhang, “Optical magnetic response from parallel plate metamaterials,” Phys. Rev. B 74(19), 193105 (2006). [CrossRef]
  5. W. Wu, E. Kim, E. Ponizovskaya, Y. Liu, Z. Yu, N. Fang, Y. R. Shen, A. M. Bratkovsky, W. Tong, C. Sun, X. Zhang, S. Y. Wang, and R. S. Williams, “Optical metamaterials at near and mid-IR range fabricated by nanoimprint lithography,” Appl. Phys., A Mater. Sci. Process. 87(2), 143–150 (2007). [CrossRef]
  6. M. Losurdo, M. M. Giangregorio, P. Capezzuto, G. Bruno, G. Malandrino, I. L. FragalÌ€, L. Armelao, D. Barreca, and E. Tondello, “Structural and optical properties of nanocrystalline Er2O 3 thin films deposited by a versatile low-pressure MOCVD approach,” J. Electrochem. Soc. 155(2), G44 (2008). [CrossRef]
  7. M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z. V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. , 1–34 (2009).
  8. W. Osten, ed., Optical inspection of microsystems (CRC Press, 2006).
  9. R. A. Chipman, “Polarimetry,” in Handbook of Optics, M. Bass, E. W. V. Stryland, D. R. Williams, and W. L. Wolfe, eds. (McGraw Hill, Inc., New York, 1995), Chap. 22.
  10. D. H. Goldstein, “Mueller matrix dual-rotating retarder polarimeter,” Appl. Opt. 31(31), 6676–6683 (1992). [CrossRef] [PubMed]
  11. R. A. Synowicki, J. N. Hilfiker, and P. K. Whitman, “Mueller matrix ellipsometry study of uniaxial deuterated potassium dihydrogen phosphate (DKDP),” Thin Solid Films 455–456, 624–627 (2004). [CrossRef]
  12. J. N. Hilfiker, B. Johs, C. M. Herzinger, J. F. Elman, E. Montbach, D. Bryant, and P. J. Bos, “Generalized spectroscopic ellipsometry and Mueller-matrix study of twisted nematic and super twisted nematic liquid crystals,” Thin Solid Films 455–456, 596–600 (2004). [CrossRef]
  13. G. E. Jellison and F. A. Modine, “Two-modulator generalized ellipsometry: theory,” Appl. Opt. 36(31), 8190–8198 (1997). [CrossRef] [PubMed]
  14. C. Chen, M. W. Horn, S. Pursel, C. Ross, and R. W. Collins, “The ultimate in real-time ellipsometry: Multichannel Mueller matrix spectroscopy,” Appl. Surf. Sci. 253(1), 38–46 (2006). [CrossRef]
  15. A. De Martino, Y. K. Kim, E. Garcia-Caurel, B. Laude, and B. Drévillon, “Optimized Mueller polarimeter with liquid crystals,” Opt. Lett. 28(8), 616–618 (2003). [CrossRef] [PubMed]
  16. S. Ben Hatit, M. Foldyna, A. De Martino, and B. Drévillon, “Angle-resolved Mueller polarimeter using a microscope objective,” Phys. Status Solidi A 205(4), 743–747 (2008). [CrossRef]
  17. P. S. Hauge, “Recent developments in instrumentation in ellipsometry,” Surf. Sci. 96(1-3), 108–140 (1980). [CrossRef]
  18. C. Chen, I. An, G. M. Ferreira, N. J. Podraza, J. A. Zapien, and R. W. Collins, “Multichannel Mueller matrix ellipsometer based on the dual rotating compensator principle,” Thin Solid Films 455–456, 14–23 (2004). [CrossRef]
  19. A. De Martino, E. Garcia-Caurel, B. Laude, and B. Drevillon, “General methods for optimized design and calibration of Mueller polarimeters,” Thin Solid Films 455–456, 112–119 (2004). [CrossRef]
  20. G. E. Jellison., “Spectroscopic ellipsometry data analysis: measured versus calculated quantities,” Thin Solid Films 313–314(1-2), 33–39 (1998). [CrossRef]
  21. A. Laskarakis, S. Logothetidis, E. Pavlopoulou, and A. Gioti, “Mueller matrix spectroscopic ellipsometry: formulation and application,” Thin Solid Films 455–456, 43–49 (2004). [CrossRef]
  22. R. W. Collins and J. Koh, “Dual rotating-compensator multichannel ellipsometer: instrument design for real-time Mueller matrix spectroscopy of surfaces and films,” J. Opt. Soc. Am. 16(8), 1997–2006 (1999). [CrossRef]
  23. F. Delplancke, “Automated high-speed Mueller matrix scatterometer,” Appl. Opt. 36(22), 5388–5395 (1997). [CrossRef] [PubMed]
  24. F. H. Delplancke, “Investigation of rough surfaces and transparent birefringent samples with Mueller-matrix scatterometry,” Appl. Opt. 36(30), 7621–7628 (1997). [CrossRef] [PubMed]
  25. G. E. Jellison and F. A. Modine, “Two-modulator generalized ellipsometry: experiment and calibration,” Appl. Opt. 36(31), 8184–8189 (1997). [CrossRef] [PubMed]
  26. E. Compain, B. Drevillon, J. Huc, J. Y. Parey, and J. E. Bouree, “Complete Mueller matrix measurement with a single high frequency modulation,” Thin Solid Films 313–314(1-2), 47–52 (1998). [CrossRef]
  27. J. M. Bueno and P. Artal, “Double-pass imaging polarimetry in the human eye,” Opt. Lett. 24(1), 64–66 (1999). [CrossRef] [PubMed]
  28. D. E. Aspnes, “Expanding horizons: new developments in ellipsometry and polarimetry,” Thin Solid Films 455–456, 3–13 (2004). [CrossRef]
  29. K. C. Toussaint, S. Park, J. E. Jureller, and N. F. Scherer, “Generation of optical vector beams with a diffractive optical element interferometer,” Opt. Lett. 30(21), 2846–2848 (2005). [CrossRef] [PubMed]
  30. C. Maurer, A. Jesacher, S. Furhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” N. J. Phys. 9(3), 78 (2007). [CrossRef]
  31. Q. Zhan, “Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam,” Opt. Lett. 31(11), 1726–1728 (2006). [CrossRef] [PubMed]
  32. A. F. Abouraddy and K. C. Toussaint., “Three-dimensional polarization control in microscopy,” Phys. Rev. Lett. 96(15), 153901–153904 (2006). [CrossRef] [PubMed]
  33. V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32(13), 1455–1461 (1999). [CrossRef]
  34. S. C. Tidwell, D. H. Ford, and W. D. Kimura, “Generating radially polarized beams interferometrically,” Appl. Opt. 29(15), 2234–2239 (1990). [CrossRef] [PubMed]
  35. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1(1), 1–57 (2009). [CrossRef]
  36. S. Quabis, R. Dorn, and G. Leuchs, “Generation of a radially polarized doughnut mode of high quality,” Appl. Phys. B 81(5), 597–600 (2005). [CrossRef]
  37. C. Brosseau, “Interaction of radiation with linear media,” in Fundamentals of polarized light: a statistical optics approach (John Wiley and Sons, Inc., New York, 1998), Chap. 4.
  38. E. Vogel, “Technology and metrology of new electronic materials and devices,” Nat Nano 2(1), 25–32 (2007). [CrossRef]
  39. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. 253(1274), 358–379 (1959). [CrossRef]
  40. L. Novotny, and B. Hecht, “Propagation and focusing of optical fields,” in Principles of nano-optics (Cambridge University Press, New York, 2007), Chap. 3.
  41. E. Wolf, “Electromagnetic Diffraction in Optical Systems. I. An Integral Representation of the Image Field,” Proc. R. Soc. Lond. 253(1274), 349–357 (1959). [CrossRef]
  42. W.-Q. Zhang, “New phase shift formulas and stability of waveplate in oblique incident beam,” Opt. Commun. 176(1-3), 9–15 (2000). [CrossRef]
  43. R. M. A. Azzam, and N. M. Bashara, “Reflection and transmission of polarized light by stratified planar structure,” in Ellipsometry and polarized light (North Holland, Amsterdam, 1989), Chap. 4.
  44. D. W. Berreman, “Optics in stratified and anisotropic media - 4X4 matrix formulation,” J. Opt. Soc. Am. 62(4), 502–510 (1972). [CrossRef]
  45. H. Fujiwara, “Ellipsometry of anisotropic materials,” in Spectroscopic ellipsometry: principles and application (John Wiley and Sons Ltd, West Sussex, 2007), Chap. 6.
  46. M. Becchi and P. Galatola, “Berreman-matrix formulation of light propagation in stratified anisotropic chiral media,” Eur. Phys. J. B 8(3), 399–404 (1999). [CrossRef]
  47. M. Iwanaga, “Effective optical constants in stratified metal-dielectric metameterial,” Opt. Lett. 32(10), 1314–1316 (2007). [CrossRef] [PubMed]
  48. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007). [CrossRef] [PubMed]
  49. A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74(7), 075103 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited