OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 24 — Nov. 23, 2009
  • pp: 21433–21441

Temperature-dependent Goos-Hänchen shift on the interface of metal/dielectric composites

Bin Zhao and Lei Gao  »View Author Affiliations


Optics Express, Vol. 17, Issue 24, pp. 21433-21441 (2009)
http://dx.doi.org/10.1364/OE.17.021433


View Full Text Article

Enhanced HTML    Acrobat PDF (431 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The temperature-dependent Goos-Hänchen shift (GHS) for an electromagnetic wave reflected from a metal/dielectric composite material is investigated. With the stationary-phase method, we theoretically show that the effect of the temperature on GHS is significant near the Brewster angle for the dielectric composites and at the grazing angle for the metallic composites. For dielectric composites, the lateral shift can be negative as well as positive. And GHS may become much negative, much positive, and nonmonotonic variation with increasing the temperature under different conditions. Moreover, through the suitable adjustment of the temperature, one may realize the reversal of the GHS. To support the above results, numerical simulations for Gaussian incident beams based on the momentum method and COMSOL Multiphysics software are provided, and reasonable agreement between the theoretical results and numerical simulations is found.

© 2009 Optical Society of America

OCIS Codes
(120.5700) Instrumentation, measurement, and metrology : Reflection
(240.0240) Optics at surfaces : Optics at surfaces
(260.2110) Physical optics : Electromagnetic optics
(260.2065) Physical optics : Effective medium theory
(160.2710) Materials : Inhomogeneous optical media

ToC Category:
Physical Optics

History
Original Manuscript: July 23, 2009
Revised Manuscript: August 28, 2009
Manuscript Accepted: October 22, 2009
Published: November 10, 2009

Citation
Bin Zhao and Lei Gao, "Temperature-dependent Goos-Hänchen shift on the interface of metal/dielectric composites," Opt. Express 17, 21433-21441 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-24-21433


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Goos and H. Hänchen, "Ein neuer und fundamental Versuch zur Totalreflexion," Ann. Phys. 1, 333-346 (1947). [CrossRef]
  2. F. Goos and H. Hanchen, "Neumessung des Strahlversetzungseffektes bei Totalreflexion," Ann. Phys. 5, 251-252 (1949). [CrossRef]
  3. K. Artmann, "Berechnung der Seitenversetzung des totalreflektierten Stranles," Ann. Phys. 2, 87-102 (1948). [CrossRef]
  4. H. K. V. Lotsch, "Beam displacement at total reflection: the Goos-H¨anchen effect," Optik 32, 116-137 (1970).
  5. T. Sakata, H. Togo, and F. Shimokawa, "Reflection-type 2× 2 optical waveguide switch using the Goos-H¨anchen shift effect," Appl. Phys. Lett. 76, 2841-2843 (2000). [CrossRef]
  6. C. W. Chen, W. C. Lin, L. S. Liao, Z. H. Lin, H. P. Chiang, P. T. Leung, E. Sijercic, and W. S. Tse, "Optical temperature sensing based on the Goos-Hanchen effect," Appl. Opt. 46, 5347-5351 (2007). [CrossRef] [PubMed]
  7. W. J. Wild and C. L. Giles, "Goos-Hanchen shifts from absorbing media," Phys. Rev. A 25, 2099-2101 (1982). [CrossRef]
  8. H. M. Lai and S. W. Chan, "Large and negative Goos-Hanchen shift near the Brewster dip on reflection from weakly absorbing media," Opt. Lett. 27, 680-682 (2002). [CrossRef]
  9. H. M. Lai, S. W. Chan and W. H. Wong, "Nonspecular effects on reflection from absorbing media at and around Brewster’s dip," J. Opt. Soc. Am. A 23, 3208-3216 (2006). [CrossRef]
  10. L. G. Wang, H. Chen, N. H. Liu, and S. Y. Zhu, "Negative and positive lateral shift of a light beam reflected from a grounded slab," Opt. Lett. 31, 1124-1126 (2006). [CrossRef] [PubMed]
  11. C. F. Li, "Negative lateral shift of a light beam transmitted through a dielectric slab and interaction of boundary effects," Phys. Rev. Lett. 91, 133903-133906 (2003). [CrossRef] [PubMed]
  12. Y. Yan, X. Chen, and C. F. Li, "Large and negative lateral displacement in an active dielectric slab configuration," Phys. Lett. A 361, 178-181 (2007). [CrossRef]
  13. Q3. H. Huang, Y. Fan, F. M. Kong, B. I. Wu, and J. A. Kong, "Influence of external magnetic field on a symmetrical gyrotropic slab in terms of Goos-H¨anchen shifts," Progress In Electromagnetics Research 82, 137-150 (2008). [CrossRef]
  14. P. T. Leung, C. W. Chen, and H. P. Chiang, "Large negative Goos-Hanchen shift at metal surfaces," Opt. Commun. 276, 206-208 (2007). [CrossRef]
  15. M. Merano, A. Aiello, G. W. ’t Hooft, M. P. van Exter, E. R. Eliel, and J. P. Woerdman, "Observation of Goos-Hanchen shifts in metallic reflection," Opt. Express 15, 15928-15934 (2007). [CrossRef] [PubMed]
  16. D. J. Hoppe and Y. Rahmat-Samii, "Gaussian Beam reflection at a dielectric-chiral interface," J. Electromagn. Waves Appl. 6, 603-624 (1992).
  17. R. A. Depine and N. E. Bonomo, "Goos-Hanchen lateral shift for Gaussian Beams reflected at achiral-chiral interfaces," Optik 103, 37-41 (1996).
  18. F. Wang and A. Lakhtakia, "Lateral shifts of optical beams on reflection by slanted chiral sculptured thin films," Opt. Commun. 235, 107-132 (2004). [CrossRef]
  19. W. T. Dong, L. Gao, and C. W. Qiu, "Goos-H¨anchen shift at the surface of chiral negative refractive media," Progress In Electromagnetics Research 104, 255-268 (2009). [CrossRef]
  20. E. Pfleghaar, A. Marseille, and A. Weis, "Quantitative investigation of the effect of resonant absorbers on the Goos-H¨anchen shift," Phys. Rev. Lett. 70, 2281-2284 (1993). [CrossRef] [PubMed]
  21. T. Tamir and H. L. Bertoni, "Lateral displacement of optical beams at multilayered and periodic structures," J. Opt. Soc. Am 61, 1397-1413 (1971). [CrossRef]
  22. D. Felbacq, A. Moreau, and R. Smaali, "Goos-Hanchen effect in the gaps of photonic crystals," Opt. Lett. 28, 1633-1635 (2003). [CrossRef] [PubMed]
  23. P. R. Berman, "Goos-Hanchen shift in negatively refractive media," Phys. Rev. E 66, 067603 (2002). [CrossRef]
  24. A. Lakhtakia, "On planewave remittances and Goos-Hanchen shifts of planar slabs with negative real permittivity and permeability," Electromagnetics 23, 71-75 (2003). [CrossRef]
  25. I. V. Shadrivov, A. A. Zharov, and Y. S. Kivshar, "Giant Goos-H¨anchen effect at the reflection from left-handed metamaterials," Appl. Phys. Lett. 83, 2713-2715 (2003). [CrossRef]
  26. N. H. Shen, J. Chen, Q. Y. Wu, T. Lan, Y. X. Fan, and H. T. Wang, "Large lateral shift near pseudo-Brewster angle reflection from a weakly absorbing double negative medium," Opt. Express 14, 10574-10579 (2006). [CrossRef] [PubMed]
  27. P. Hou, Y. Y. Chen, X. Chen, J. L. Shi, and Q. Wang, "Giant bistable shifts for one-dimensional nonlinear photonic crystals," Phys. Rev. A 75. 045802 (2007). [CrossRef]
  28. L. G. Wang, M. Ikram, and M. S. Zubairy, "Control of the Goos-Hanchen shift of a light beam via a conherent driving field," Phys. Rev. A 77, 023811 (2008). [CrossRef]
  29. Y. Wang, Z. Q. Cao, H. G. Li, J. Hao, T. Y. Yu, and Q. S. Shen, "Electric control of spatial beam position based on the Goos-Hanchen effect," Appl. Phys. Lett. 93, 091103 (2008). [CrossRef]
  30. H. P. Chiang, P. T. Leung, and W. S. Tse, "Remarks on the substrate-temperature dependence of surface-enhanced Raman scattering," J. Phys. Chem. B 104, 2348-2350 (2000). [CrossRef]
  31. L. H. Shi, L. Gao, S. L. He, and B. W. Li, "Superlens from metal-dielectric composites of nonspherical particles," Phys. Rev. B 76, 045116 (2007). [CrossRef]
  32. J. B. Gotte, A. Aiello, and J. P. Woerdman, "Loss-induced transition of the Goos-H¨anchen effect for metals and dielectrics," Opt. Express 16, 3961-3969 (2008). [CrossRef] [PubMed]
  33. L. Gao and Z. Y. Li, "Effect of temperature on nonlinear optical properties of composite media with shape distribution," J. Appl. Phys. 91, 2045-2050 (2002). [CrossRef]
  34. L. H. Shi and L. Gao, "Subwavelength imaging from a multylayered structure containing interleaved nonspherical metal-dielectric composites," Phys. Rev. B 77, 195121 (2008). [CrossRef]
  35. C. F. Li and Q. Wang, "Prediction of simultaneously large and opposite generalized Goos-Hanchen shifts for TE and TM light beams in an asymmetric double-prism configuration," Phys. Rev. E 69, 055601 (2004). [CrossRef]
  36. X. B. Liu, Z. Q. Cao, P. F. Zhu, Q. S. Shen, and X. M. Liu, "Large positive and negative lateral optical beam shift in prism-waveguide coupling system," Phys. Rev. E 73, 056617 (2006). [CrossRef]
  37. C. F. Li, "Unified theory for Goos-Hanchen and Imbert-Fedorov effects," Phys. Rev. A 76, 013811 (2007). [CrossRef]
  38. Q6. A. Aiello and J. P. Woerdman, "Role of beam propagation in Goos-Hanchen and Imbert-Fedorov shifts," Opt. Lett. 33, 1437-1439. [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited