OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 24 — Nov. 23, 2009
  • pp: 21497–21508

Modulation instability, Akhmediev Breathers and continuous wave supercontinuum generation

J. M. Dudley, G. Genty, F. Dias, B. Kibler, and N. Akhmediev  »View Author Affiliations

Optics Express, Vol. 17, Issue 24, pp. 21497-21508 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1100 KB) | SpotlightSpotlight on Optics

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Numerical simulations of the onset phase of continuous wave supercontinuum generation from modulation instability show that the structure of the field as it develops can be interpreted in terms of the properties of Akhmediev Breathers. Numerical and analytical results are compared with experimental measurements of spectral broadening in photonic crystal fiber using nanosecond pulses.

© 2009 OSA

OCIS Codes
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: September 4, 2009
Revised Manuscript: October 8, 2009
Manuscript Accepted: October 8, 2009
Published: November 10, 2009

Virtual Issues
November 17, 2009 Spotlight on Optics

J. M. Dudley, G. Genty, F. Dias, B. Kibler, and N. Akhmediev, "Modulation instability, Akhmediev Breathers and continuous wave supercontinuum generation," Opt. Express 17, 21497-21508 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. B. Benjamin and J. E. Feir, “The disintegration of wavetrains on deep water. Part 1: Theory,” J. Fluid Mech. 27(03), 417–430 (1967). [CrossRef]
  2. V. I. Bespalov and V. I. Talanov, “Filamentary structure of light beams in nonlinear liquids,” JETP Lett. 3, 307–310 (1966).
  3. G. Van Simaeys, Ph. Emplit, and M. Haelterman, “Experimental demonstration of the Fermi-Pasta-Ulam recurrence in a modulationally unstable optical wave,” Phys. Rev. Lett. 87(3), 033902 (2001). [CrossRef] [PubMed]
  4. N. N. Akhmediev, “Nonlinear physics. Déjà vu in optics,” Nature 413(6853), 267–268 (2001). [CrossRef] [PubMed]
  5. J. Beeckman, X. Hutsebaut, M. Haelterman, and K. Neyts, “Induced modulation instability and recurrence in nematic liquid crystals,” Opt. Express 15(18), 11185–11195 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-18-11185 . [CrossRef] [PubMed]
  6. K. Tai, A. Hasegawa, and A. Tomita, “Observation of modulational instability in optical fibers,” Phys. Rev. Lett. 56(2), 135–138 (1986). [CrossRef] [PubMed]
  7. E. J. Greer, D. M. Patrick, P. G. J. Wigley, and J. R. Taylor, “Generation of 2 THz repetition rate pulse trains through induced modulational instability,” Electron. Lett. 25(18), 1246–1248 (1989). [CrossRef]
  8. G. P. Agrawal, “Modulation instability induced by cross-phase modulation,” Phys. Rev. Lett. 59(8), 880–883 (1987). [CrossRef] [PubMed]
  9. A. Demircan and U. Bandelow, “Supercontinuum generation by the modulation instability,” Opt. Commun. 244(1-6), 181–185 (2005). [CrossRef]
  10. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006). [CrossRef]
  11. J. C. Travers, A. B. Rulkov, B. A. Cumberland, S. V. Popov, and J. R. Taylor, “Visible supercontinuum generation in photonic crystal fibers with a 400W continuous wave fiber laser,” Opt. Express 16(19), 14435–14447 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-19-14435 . [CrossRef] [PubMed]
  12. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007). [CrossRef] [PubMed]
  13. J. M. Dudley, G. Genty, and B. J. Eggleton, “Harnessing and control of optical rogue waves in supercontinuum generation,” Opt. Express 16(6), 3644–3651 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-6-3644U . [CrossRef] [PubMed]
  14. N. Akhmediev and V. I. Korneev, “Modulation instability and periodic solutions of the nonlinear Schrodinger equation,” Theor. Math. Phys. 69(2), 1089–1093 (1986). [CrossRef]
  15. M. J. Ablowitz and B. M. Herbst, “On homoclinic structure and numerically induced chaos for the nonlinear Schrödinger equation,” SIAM J. Appl. Math. 50(2), 339–351 (1990). [CrossRef]
  16. A. R. Osborne, M. Onorato, and M. Serio, “The nonlinear dynamics of rogue waves and holes in deep-water gravity wave trains,” Phys. Lett. A 275(5-6), 386–393 (2000). [CrossRef]
  17. V. I. Karpman, A. G. Shagalov, and J. J. Rasmussen, “Modulational instability due to nonlinear coupling between high- and low-frequency waves: a study of truncated systems,” Phys. Lett. A 147(2-3), 119–124 (1990). [CrossRef]
  18. S. Trillo and S. Wabnitz, “Dynamics of the nonlinear modulational instability in optical fibers,” Opt. Lett. 16(13), 986–988 (1991). [CrossRef] [PubMed]
  19. S. Trillo, S. Wabnitz, and T. A. B. Kennedy, “Nonlinear dynamics of dual-frequency-pumped multiwave mixing in optical fibers,” Phys. Rev. A 50(2), 1732–1747 (1994). [CrossRef] [PubMed]
  20. S. Liu, “Four-wave mixing and modulation instability of continuous optical waves in single-mode optical fibers,” Appl. Phys. Lett. 89(17), 171118 (2006). [CrossRef]
  21. S. M. Kobtsev and S. V. Smirnov, “Influence of noise amplification on generation of regular short pulse trains in optical fibre pumped by intensity-modulated CW radiation,” Opt. Express 16(10), 7428–7434 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-10-7428 . [CrossRef] [PubMed]
  22. K. B. Dysthe and K. Trulsen, “Note on Breather type Solutions of the NLS as models for freak-waves,” Phys. Scr. T82(1), 48–52 (1999). [CrossRef]
  23. D. Clamond, M. Francius, J. Grue, C. Kharif, “Long time interaction of envelope solitons and freak wave formations,” European J. Mech. B – Fluids/B 25, 536–553 (2006)
  24. I. Ten, and H. Tomita, “Simulation of the ocean waves and appearance of freak waves,” Reports of RIAM Symposium No.17SP1–2, Chikushi Campus, Kyushu University, Kasuga, Fukuoka, Japan, March 10 – 11 (2006).
  25. V. V. Voronovich, V. I. Shrira, and G. Thomas, “Can bottom friction suppress ‘freak wave’ formation?” J. Fluid Mech. 604, 263–296 (2008). [CrossRef]
  26. D. L. Hart, A. F. Judy, R. Roy, and J. W. Beletic, “Dynamical evolution of multiple four-wave-mixing processes in an optical fiber,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(4), 4757–4774 (1998). [CrossRef]
  27. G. P. Agrawal, Nonlinear Fiber Optics. 4th Edition. Academic Press, Boston (2007)
  28. N. Akhmediev, V. M. Eleonskii, and N. E. Kulagin, “Exact first-order solutions of the nonlinear Schrodinger equation,” Theor. Math. Phys. 72(2), 809–818 (1987). [CrossRef]
  29. N. Akhmediev, V. M. Eleonskii, and N. E. Kulagin, “Generation of periodic trains of picosecond pulses in an optical fiber: exact solutions,” Sov. Phys. JETP 62, 894–899 (1985).
  30. N. Akhmediev, V. I. Korneev, and N. V. Mitskevich, “N-modulation signals in a single-mode optical waveguide under nonlinear conditions,” Sov. Phys. JETP 67, 89–95 (1988).
  31. N. Akhmediev, and A. Ankiewicz, Solitons, Nonlinear Pulses and Beams, (Chapman and Hall, London, 1997)
  32. J. M. Dudley, F. Gutty, S. Pitois, and G. Millot, “Complete characterization of THz pulse trains generated from nonlinear processes in optical fibers,” IEEE J. Quantum Electron. 37(4), 587–594 (2001). [CrossRef]
  33. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000). [CrossRef] [PubMed]
  34. J. N. Kutz, C. Lyngå, and B. J. Eggleton, “Enhanced supercontinuum generation through dispersion-management,” Opt. Express 13(11), 3989–3998 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-11-3989 . [CrossRef] [PubMed]
  35. N. Korneev, E. A. Kuzin, B. Ibarra-Escamilla, M. Bello-Jiménez, and A. Flores-Rosas, “Initial development of supercontinuum in fibers with anomalous dispersion pumped by nanosecond-long pulses,” Opt. Express 16(4), 2636–2645 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-4-2636 . [CrossRef] [PubMed]
  36. T. Inoue, J. Hiroishi, T. Yagi, and Y. Mimura, “Generation of in-phase pulse train from optical beat signal,” Opt. Lett. 32(11), 1596–1598 (2007). [CrossRef] [PubMed]
  37. B. Barviau, C. Finot, J. Fatome, and G. Millot, “Generation from continuous waves of frequency combs with large overall bandwidth and tunable central wavelength,” Electron. Lett. 43(16), 886–887 (2007). [CrossRef]
  38. F. C. Cruz, “Optical frequency combs generated by four-wave mixing in optical fibers for astrophysical spectrometer calibration and metrology,” Opt. Express 16(17), 13267–13275 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-17-13267U . [CrossRef] [PubMed]
  39. J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3(2), 85–90 (2009). [CrossRef]
  40. D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101(23), 233902 (2008). [CrossRef] [PubMed]
  41. G. Genty, J. M. Dudley, and B. J. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94(2), 187–194 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited