OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 24 — Nov. 23, 2009
  • pp: 21522–21529

Hybrid surface-enhanced Raman scattering substrate from gold nanoparticle and photonic crystal: Maneuverability and uniformity of Raman spectra

Cheng Yi Wu, Chia Chi Huang, Jia Sin Jhang, An Chi Liu, Chun-Chen Chiang, Ming-Lung Hsieh, Ping-Ji Huang, Le Dac Tuyen, Le Quoc Minh, Tzyy Schiuan Yang, Lai-Kwan Chau, Hung-Chih Kan, and Chia Chen Hsu  »View Author Affiliations


Optics Express, Vol. 17, Issue 24, pp. 21522-21529 (2009)
http://dx.doi.org/10.1364/OE.17.021522


View Full Text Article

Enhanced HTML    Acrobat PDF (834 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel hybrid surface-enhanced Raman scattering (SERS) substrate based on Au nanoparticles decorated inverse opal (IO) photonic crystal (PhC) is presented. In addition to the enhancement contributed from Au nanoparticles, a desired Raman signal can be selectively further enhanced by appropriately overlapping the center of photonic bandgap of the IO PhC with the wavelength of the Raman signal. Furthermore, the lattice structure of the IO PhC provides excellent control of the distribution of Au nanoparticles to produce SERS spectra with high uniformity. The new design of SERS substrate provides extra maneuverability for ultra-high sensitivity sensor applications.

© 2009 OSA

OCIS Codes
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(220.4241) Optical design and fabrication : Nanostructure fabrication
(160.5293) Materials : Photonic bandgap materials
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering

ToC Category:
Photonic Crystals

History
Original Manuscript: September 10, 2009
Revised Manuscript: October 23, 2009
Manuscript Accepted: November 1, 2009
Published: November 10, 2009

Citation
Cheng Yi Wu, Chia Chi Huang, Jia Sin Jhang, An Chi Liu, Chun-Chen Chiang, Ming-Lung Hsieh, Ping-Ji Huang, Le Dac Tuyen, Le Quoc Minh, Tzyy Schiuan Yang, Lai-Kwan Chau, Hung-Chih Kan, and Chia Chen Hsu, "Hybrid surface-enhanced Raman scattering substrate from gold nanoparticle and photonic crystal: Maneuverability and uniformity of Raman spectra," Opt. Express 17, 21522-21529 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-24-21522


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974). [CrossRef]
  2. G. C. Schatz, M. A. Young, and R. P. Van Duyne, “Electromagnetic mechanism of SERS,” in Surface-Enhanced Raman Scattering: Physics and Applications (2006), pp. 19–45.
  3. S. Chan, S. Kwon, T.-W. Koo, L. P. Lee, and A. Berlin, “Surface-enhanced Raman scattering of small molecules from silver-coated silicon nanopores,” Adv. Mater. 15(19), 1595–1598 (2003). [CrossRef]
  4. H.-H. Wang, C.-Y. Liu, S.-B. Wu, N.-W. Liu, C.-Y. Peng, T.-H. Chan, C.-F. Hsu, J.-K. Wang, and Y.-L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. 18(4), 491–495 (2006). [CrossRef]
  5. L.-Y. Chen, J.-S. Yu, T. Fujita, and M.-W. Chen, “Nanoporous copper with tunable nanoporosity for SERS applications,” Adv. Funct. Mater. 19(8), 1221–1226 (2009). [CrossRef]
  6. C. R. Yonzon, D. A. Stuart, X. Zhang, A. D. McFarland, C. L. Haynes, and R. P. Van Duyne, “Towards advanced chemical and biological nanosensors-An overview,” Talanta 67(3), 438–448 (2005). [CrossRef] [PubMed]
  7. L. A. Dick, A. D. McFarland, C. L. Haynes, and R. P. V. Duyne, “Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): Improvements in surface nanostructure stability and suppression of irreversible loss,” J. Phys. Chem. B 106(4), 853–860 (2002). [CrossRef]
  8. S. Kubo, Z.-Z. Gu, D. A. Tryk, Y. Ohko, O. Sato, and A. Fujishima, “Metal-coated colloidal crystal films as surface-enhanced Raman scattering substrate,” Langmuir 18(13), 5043–5046 (2002). [CrossRef]
  9. L. Lu, I. Randjelovic, R. Capek, N. Gaponik, J. Yang, H. Zhang, and A. Eychmüller, “Controlled fabrication of gold-coated 3D ordered colloidal crystal films and their application in surface-enhanced Raman spectroscopy,” Chem. Mater. 17(23), 5731–5736 (2005). [CrossRef]
  10. Y. Djaoued, S. Badilescu, S. Balaji, N. Seirafianpour, A.-R. Hajiaboli, R. Banan Sadeghian, K. Braedley, R. Brüning, M. Kahrizi, and V.-V. Truong, “Micro-Raman spectroscopy study of colloidal crystal films of polystyrene-gold composites,” Appl. Spectrosc. 61(11), 1202–1210 (2007). [CrossRef] [PubMed]
  11. P. M. Tessier, O. D. Velev, A. T. Kalambur, J. F. Rabolt, A. M. Lenhoff, and E. W. Kaler, “Assembly of gold nanostructured films templated by colloidal crystals and use in surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 122(39), 9554–9555 (2000). [CrossRef]
  12. L. Lu, A. Eychmüller, A. Kobayashi, Y. Hirano, K. Yoshida, Y. Kikkawa, K. Tawa, and Y. Ozaki, “Designed fabrication of ordered porous au/ag nanostructured films for surface-enhanced Raman scattering substrates,” Langmuir 22(6), 2605–2609 (2006). [CrossRef] [PubMed]
  13. D. M. Kuncicky, B. G. Prevo, and O. D. Velev, “Controlled assembly of SERS substrates templated by colloidal crystal films,” J. Mater. Chem. 16(13), 1207–1211 (2006). [CrossRef]
  14. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987). [CrossRef] [PubMed]
  15. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987). [CrossRef] [PubMed]
  16. C. López, “Materials Aspects of photonic crystals,” Adv. Mater. 15(20), 1679–1704 (2003). [CrossRef]
  17. H. Míguez, F. Meseguer, C. López, A. Blanco, J. S. Moya, J. Requena, A. Mifsud, and V. Fornés, “Control of the photonic crystal properties of fcc packed submicron SiO2 spheres by sintering,” Adv. Mater. 10(6), 480–483 (1998). [CrossRef] [PubMed]
  18. A. Kocabas, G. Ertas, S. S. Senlik, and A. Aydinli, “Plasmonic band gap structures for surface-enhanced Raman scattering,” Opt. Express 16(17), 12469–12477 (2008). [CrossRef] [PubMed]
  19. J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett. 5(11), 2262–2267 (2005). [CrossRef] [PubMed]
  20. N. M. B. Perney, J. J. Baumberg, M. E. Zoorob, M. D. B. Charlton, S. Mahnkopf, and C. M. Netti, “Tuning localized plasmons in nanostructured substrates for surface-enhanced Raman scattering,” Opt. Express 14(2), 847–857 (2006). [CrossRef] [PubMed]
  21. N. M. B. Perney, F. J. Garcí de Abajo, J. J. Baumberg, A. Tang, M. C. Netti, M. D. B. Charlton, and M. E. Zoorob, “Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering,” Phys. Rev. B 76(3), 035426 (2007). [CrossRef]
  22. J. Wang, S. Ahl, Q. Li, M. Kreiter, T. Neumann, K. Burkert, W. Knoll, and U. Jonas, “Structural and optical characterization of 3D binary colloidal crystal and inverse opal films prepared by direct co-deposition,” J. Mater. Chem. 18(9), 981–988 (2008). [CrossRef]
  23. C. Y. Wu, N. D. Lai, and C. C. Hsu, “Rapidly self-assembling three-dimensional opal photonic crystals,” J. Korean. Phys. Soc. 52(5), 1585–1588 (2008). [CrossRef]
  24. K. Kwon, K. Y. Lee, Y. W. Lee, M. Kim, J. Heo, S. J. Ahn, and S. W. Han, “Controlled synthesis of icosahedral gold nanoparticles and their surface-enhanced Raman scattering property,” J. Phys. Chem. C 111(3), 1161–1165 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited