OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 24 — Nov. 23, 2009
  • pp: 21544–21550

Efficient second harmonic generation of double-end diffusion-bonded Nd:YVO4 self-Raman laser producing 7.9 W yellow light

Haiyong Zhu, Yanmin Duan, Ge Zhang, Chenghui Huang, Yong Wei, Hongyuan Shen, Yiqun Zheng, Lingxiong Huang, and Zhenqiang Chen  »View Author Affiliations

Optics Express, Vol. 17, Issue 24, pp. 21544-21550 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (293 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A high power and efficient 588 nm yellow light is demonstrated through intracavity frequency doubling of an acousto-optic Q-switched self-frequency Raman laser. A 30-mm-length double-end diffusion-bonded Nd:YVO4 crystal was utilized for efficient self-Raman laser operation by reducing the thermal effects and increasing the interaction length for the stimulated Raman scattering. A 15-mm-length LBO with non-critical phase matching (θ = 90°, ϕ = 0°) cut was adopted for efficient second-harmonic generation. The focus position of incident pump light and both the repetition rate and the duty cycle of the Q-switch have been optimized. At a repetition rate of 110 kHz and a duty cycle of 5%, the average power of 588 nm light is up to 7.93 W while the incident pump power is 26.5 W, corresponding to an overall diode-yellow conversion efficiency of 30% and a slope efficiency of 43%.

© 2009 OSA

OCIS Codes
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3540) Lasers and laser optics : Lasers, Q-switched
(140.3550) Lasers and laser optics : Lasers, Raman
(140.7300) Lasers and laser optics : Visible lasers
(190.2620) Nonlinear optics : Harmonic generation and mixing

ToC Category:
Nonlinear Optics

Original Manuscript: September 4, 2009
Revised Manuscript: October 30, 2009
Manuscript Accepted: November 8, 2009
Published: November 11, 2009

Haiyong Zhu, Yanmin Duan, Ge Zhang, Chenghui Huang, Yong Wei, Hongyuan Shen, Yiqun Zheng, Lingxiong Huang, and Zhenqiang Chen, "Efficient second harmonic generation of double-end diffusion-bonded Nd:YVO4 self-Raman laser producing 7.9 W yellow light," Opt. Express 17, 21544-21550 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3-4), 121–158 (2008). [CrossRef]
  2. E. Mimoun, L. De Sarlo, J. J. Zondy, J. Dalibard, and F. Gerbier, “Sum-frequency generation of 589 nm light with near-unit efficiency,” Opt. Express 16(23), 18684–18691 (2008). [CrossRef] [PubMed]
  3. Y. F. Lu, S. Y. Xie, Y. Bo, Q. J. Cui, N. Zong, H. W. Gao, Q. J. Peng, D. F. Cui, and Z. Y. Xu, “A high power quasi-continuous-wave yellow laser based on intracavity sum-frequency generation,” Acta Phys. Sin. 58, 970–974 (2009).
  4. E. Raikkonen, O. Kimmelma, M. Kaivola, and S. C. Buchter, “Passively Q-switched Nd:YAG/KTA laser at 561 nm,” Opt. Commun. 281(15-16), 4088–4091 (2008). [CrossRef]
  5. F. Q. Jia, Q. Zheng, Q. H. Xue, and Y. Bu, “LD-pumped Nd:YAG/LBO 556nm yellow laser,” Opt. Laser Technol. 38(8), 569–572 (2006). [CrossRef]
  6. J. A. Piper and H. M. Pask, “Crystalline Raman Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 692–704 (2007). [CrossRef]
  7. S. T. Li, X. Y. Zhang, Q. P. Wang, X. L. Zhang, Z. H. Cong, H. J. Zhang, and J. Y. Wang, “Diode-side-pumped intracavity frequency-doubled Nd:YAG/BaWO4 Raman laser generating average output power of 3.14 W at 590 nm,” Opt. Lett. 32(20), 2951–2953 (2007). [CrossRef] [PubMed]
  8. A. J. Lee, H. M. Pask, P. Dekker, and J. A. Piper, “High efficiency, multi-Watt CW yellow emission from an intracavity-doubled self-Raman laser using Nd:GdVO4.,” Opt. Express 16(26), 21958–21963 (2008). [CrossRef] [PubMed]
  9. Y. T. Chang, H. L. Chang, K. W. Su, and Y. F. Chen, “High-efficiency Q-switched dual-wavelength emission at 1176 and 559 nm with intracavity Raman and sum-frequency generation,” Opt. Express 17(14), 11892–11897 (2009). [CrossRef] [PubMed]
  10. Z. H. Cong, X. Y. Zhang, Q. P. Wang, Z. J. Liu, S. T. Li, X. H. Chen, X. L. Zhang, S. Z. Fan, H. J. Zhang, and X. T. Tao, “Efficient diode-end-pumped actively Q-switched Nd:YAG/SrWO(4)/KTP yellow laser,” Opt. Lett. 34(17), 2610–2612 (2009). [CrossRef] [PubMed]
  11. H. Y. Zhu, Y. M. Duan, G. Zhang, C. H. Huang, Y. Wei, W. D. Chen, Y. D. Huang, and N. Ye, “Yellow-light generation of 5.7 W by intracavity doubling self-Raman laser of YVO(4)/Nd:YVO(4) composite,” Opt. Lett. 34(18), 2763–2765 (2009). [CrossRef] [PubMed]
  12. Y. T. Chang, Y. P. Huang, K. W. Su, and Y. F. Chen, “Comparison of thermal lensing effects between single-end and double-end diffusion-bonded Nd:YVO4 crystals for 4F3/2→4I11/2 and 4F3/2→4I13/2 transitions,” Opt. Express 16(25), 21155–21160 (2008). [CrossRef] [PubMed]
  13. A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1-3), 201–206 (2001). [CrossRef]
  14. Y. P. Lan, Y. F. Chen, and S. C. Wang, “Repetition-rate dependence of thermal loading in diode-end-pumped Qswitched lasers: influence of energy-transfer upconversion,” Appl. Phys. B 71, 27–31 (2000).
  15. Y. F. Chen, “High-power diode-pumped actively Q-switched Nd:YVO4 self-Raman laser: influence of dopant concentration,” Opt. Lett. 29(16), 1915–1917 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited