OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 24 — Nov. 23, 2009
  • pp: 21551–21559

Thermally stabilized PCF-based sensor for temperature measurements up to 1000°C

Gianluca Coviello, Vittoria Finazzi, Joel Villatoro, and Valerio Pruneri  »View Author Affiliations

Optics Express, Vol. 17, Issue 24, pp. 21551-21559 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (598 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the development of a stable Photonic Crystal Fiber (PCF) based two-mode interferometric sensor for ultra-high temperature measurements (up to 1000°C). The device consists of a stub of PCF spliced to standard optical fiber. In the splice regions, the voids of the PCF are fully collapsed, thus allowing the excitation and recombination of two core modes. The device spectrum exhibits sinusoidal interference pattern which shifts with temperature. We show that, despite being compact and robust, the proposed sensor head needs a quite long burn in (thermal annealing) to achieve an adequate and stable functionality level. The burn in process eliminates the residual stress in the fiber structure, which had been accumulated during the drawing phase, and changes the glass fictive temperature.

© 2009 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(160.0160) Materials : Materials
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(060.5295) Fiber optics and optical communications : Photonic crystal fibers
(280.6780) Remote sensing and sensors : Temperature

ToC Category:

Original Manuscript: October 2, 2009
Revised Manuscript: October 30, 2009
Manuscript Accepted: October 30, 2009
Published: November 11, 2009

Gianluca Coviello, Vittoria Finazzi, Joel Villatoro, and Valerio Pruneri, "Thermally stabilized PCF-based sensor for temperature measurements up to 1000ºC," Opt. Express 17, 21551-21559 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Rose, "Devitrification in annealed optical fiber," J. Lightwave Technology,  15(5), 808-814 (1997). [CrossRef]
  2. A. H. Rose and T. J. Bruno, "The observation of OH in annealed optical fiber," J. Non-Cryst. Solids 231(3), 280- 285 (1998). [CrossRef]
  3. S. Trpkovski, D. J. Kitcher, G. W. Baxter, S. F. Collins, and S. A. Wade, "High-temperature-resistant chemical composition Bragg gratings in Er3+-doped optical fiber," Opt. Lett. 30, 607-609 (2005). [CrossRef] [PubMed]
  4. S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, "Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm," Opt. Lett. 33, 1917-1919 (2008). [CrossRef] [PubMed]
  5. K. Cook, A. A. P. Pohl, and J. Canning, "High-temperature type IIa gratings in 12-ring photonic crystal fibre with germanosilicate core," J. Europ. Opt. Soc. Rap. Public. 3, 08,031 (2008).
  6. V. I. Kopp, V. M. Churikov, G. Zhang, J. Singer, C. W. Draper, N. Chao, D. Neugroschl, and A. Z. Genack, "Single- and double-helix chiral fiber sensors," J. Opt. Soc. Am. B 24(10), A48-A52 (2007). [CrossRef]
  7. H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, "Miniature fiber-optic high temperature sensor based on a hybrid structured FabryPerot interferometer," Opt. Lett. 33, 2455-2457 (2008). [CrossRef] [PubMed]
  8. M. Fokine, "Formation of thermally stable chemical composition gratings in optical fibers," J. Opt. Soc. Am. B 19(8), 1759-1765 (2002). [CrossRef]
  9. A. Kersey, M. Davis, H. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15(8), 1442-1463 (1997). [CrossRef]
  10. D. Monzon-Hernandez, V. P. Minkovich, and J. Villatoro, "High-temperature sensing with tapers made of microstructured optical fiber," IEEE Photon. Technol. Lett. 18, 511- 513 (2006). [CrossRef]
  11. T. Wei, Y. Han, H. L. Tsai, and H. Xiao, "Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser," Opt. Lett. 33, 536-538 (2008). [CrossRef] [PubMed]
  12. J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, "Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing," Appl. Phys. Lett. 91(9), 091109 (pages 3) (2007). [CrossRef]
  13. H. Y. Choi, K. S. Park, and B. H. Lee, "Photonic crystal fiber interferometer composed of a long period grating and one point collapsing of air holes," Opt. Lett. 33(8), 812-814 (2008). [CrossRef]
  14. G. Coviello, V. Finazzi, J. Villatoro, and V. Pruneri, "Encapsulated and coated photonic crystal fibre sensor for temperature measurements up to 1000◦C," in CLEO EUROPE - EQEC 2009. Conference on lasers and electrooptics- European Quantum Electronics Conference, p. CH1.6 (2009). [CrossRef] [PubMed]
  15. V. Finazzi, J. Villatoro, G. Coviello, and V. Pruneri, "Photonic Crystal Fibre Sensor for High Temperature Energy Environment," in Optics and Photonics for Advanced Energy Technology, p. ThC1 (Optical Society of America, 2009).
  16. Y. Mohanna, J. Saugrain, J. Rousseau, and P. Ledoux, "Relaxation of internal stresses in optical fibers," J. Lightwave Technology,  8(12), 1799-1802 (1990). [CrossRef]
  17. T. S. Izumitani, Optical Glass (American Institute of Physics, New York, USA, 1986).
  18. J. E. Shelby, Introduction to Glass Science and Technology, 2nd ed. (The Royal Society of Chemistry, Cambridge, UK, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited