OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 24 — Nov. 23, 2009
  • pp: 21560–21565

Breaking the feature sizes down to sub-22 nm by plasmonic interference lithography using dielectric-metal multilayer

Xuefeng Yang, Beibei Zeng, Changtao Wang, and Xiangang Luo  »View Author Affiliations


Optics Express, Vol. 17, Issue 24, pp. 21560-21565 (2009)
http://dx.doi.org/10.1364/OE.17.021560


View Full Text Article

Enhanced HTML    Acrobat PDF (213 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have developed the plasmonic interference lithography technique to achieve the feature sizes theoretically down to sub-22 nm even to 16.5 nm by using dielectric-metal multilayer (DMM) with diffraction-limited masks at the wavelength of 193 nm with p-polarization. An 8 pairs of GaN (10 nm) / Al (12 nm) multilayer is designed as a filter allowing only a part of high wavevector k (evanescent waves) to pass through for interference lithography. The analysis of the influence by the number of DMM layers is presented. 4 pairs of the proposed multilayer can be competent for pattern the minimal feature size down to 21.5 nm at the visibility about 0.4 to satisfy the minimum visibility required with positive resist. Finite-difference time-domain analysis method is used to demonstrate the validity of the theory.

© 2009 OSA

OCIS Codes
(220.3740) Optical design and fabrication : Lithography
(240.6680) Optics at surfaces : Surface plasmons
(260.3160) Physical optics : Interference
(160.3918) Materials : Metamaterials

ToC Category:
Optics at Surfaces

History
Original Manuscript: May 8, 2009
Revised Manuscript: July 30, 2009
Manuscript Accepted: October 1, 2009
Published: November 11, 2009

Citation
Xuefeng Yang, Beibei Zeng, Changtao Wang, and Xiangang Luo, "Breaking the feature sizes down to sub-22 nm by plasmonic interference lithography using dielectric-metal multilayer," Opt. Express 17, 21560-21565 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-24-21560


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. K. Bates, M. Rothschild, T. M. Bloomstein, T. H. Fedynyshyn, R. R. Kunz, V. Liberman, and M. Switkes, “Review of technology for 157-nm lithography,” IBM J. Res. Develop. 45, 605–614 (2001). [CrossRef]
  2. J. P. Silverman, “Challenges and progress in x-ray lithography,” J. Vac. Sci. Technol. B 16(6), 3137–3141 (1998). [CrossRef]
  3. T. M. Bloomstein, M. F. Marchant, S. Deneault, D. E. Hardy, and M. Rothschild, “22-nm immersion interference lithography,” Opt. Express 14(14), 6434–6443 (2006). [CrossRef] [PubMed]
  4. H. Raether, Surface Plasmons on Smooth and Rough Surface and on Gratings (Springer, Heidelberg, 1988).
  5. X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004). [CrossRef]
  6. Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005). [CrossRef] [PubMed]
  7. T. Xu, Y. Zhao, C. Wang, J. Cui, C. Du, and X. Luo, “Sub-diffraction-limited interference photolithography with metamaterials,” Opt. Express 16(18), 13579–13584 (2008). [CrossRef] [PubMed]
  8. Y. Xiong, Z. Liu, and X. Zhang, “Projecting deep-subwavelength patterns from diffraction-limited masks using metal-dielectric multilayers,” Appl. Phys. Lett. 93(11), 111116 (2008). [CrossRef]
  9. V. M. Murukeshan and K. V. Sreekanth, “Excitation of gap modes in a metal particle-surface system for sub-30 nm plasmonic lithography,” Opt. Lett. 34(6), 845–847 (2009). [CrossRef] [PubMed]
  10. Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7(11), 3360–3365 (2007). [CrossRef] [PubMed]
  11. M. J. Madou, Fundamentals of Microfabrication, (CRC, Boca Raton, 2002).
  12. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006). [CrossRef] [PubMed]
  13. J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008). [CrossRef] [PubMed]
  14. I. Avrutsky, I. Salakhutdinov, J. Elser, and V. Podolskiy, “Highly confined optical modes in nanoscale metal-dielectric multilayers,” Phys. Rev. B 75(24), 241402 (2007). [CrossRef]
  15. B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavlength imaging using a layered metal-dielectric system,” Phys. Rev. B 74(11), 115116 (2006). [CrossRef]
  16. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12(5), 1077–1086 (1995). [CrossRef]
  17. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  18. M. J. Weber, Handbook of Optical Materials, (CRC Press, 2003).
  19. L. Kong, Q. Pan, B. Cui, M. Li, and S. Y. Chou, “Magnetotransport and domain structures in nanoscale NiFe/Cu/Co spin valve,” J. Appl. Phys. 85(8), 5492–5494 (1999). [CrossRef]
  20. H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96(9), 097401 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited