OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 24 — Nov. 23, 2009
  • pp: 21581–21589

One-step fabrication of nanostructures by femtosecond laser for surface-enhanced Raman scattering

Cheng-Hsiang Lin, Lan Jiang, Yen-Hsin Chai, Hai Xiao, Shean-Jen Chen, and Hai-Lung Tsai  »View Author Affiliations

Optics Express, Vol. 17, Issue 24, pp. 21581-21589 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (2361 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper reports an efficient fabrication of nanostructures on silicon substrates for surface-enhanced Raman scattering (SERS). Silicon wafer substrates in the aqueous solution of silver nitrate were machined by the femtosecond laser direct writing to achieve simultaneously in one-step the generation of grating-like nanostructures on the surface of the substrate and the formation of silver nanoparticles on the surface of the nanostructures via the laser-induced photoreduction effect. Parametric studies were conducted for the different concentrations of aqueous silver nitrate solutions and scanning speeds. The enhancement factor of the SERS is found to be higher than 109. The patterning technique provides an opportunity to incorporate the SERS capability in a functional microchip.

© 2009 OSA

OCIS Codes
(230.3990) Optical devices : Micro-optical devices
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering

ToC Category:
Optics at Surfaces

Original Manuscript: September 22, 2009
Revised Manuscript: November 6, 2009
Manuscript Accepted: November 6, 2009
Published: November 11, 2009

Cheng-Hsiang Lin, Lan Jiang, Yen-Hsin Chai, Hai Xiao, Shean-Jen Chen, and Hai-Lung Tsai, "One-step fabrication of nanostructures by femtosecond laser for surface-enhanced Raman scattering," Opt. Express 17, 21581-21589 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974). [CrossRef]
  2. D. L. Jeanmaire and R. P. Van Duyne, “Surface raman spectroelectrochemistry Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84(1), 1–20 (1977). [CrossRef]
  3. C. Fang, A. Agarwal, K. D. Buddharaju, N. M. Khalid, S. M. Salim, E. Widjaja, M. V. Garland, N. Balasubramanian, and D. L. Kwong, “DNA detection using nanostructured SERS substrates with Rhodamine B as Raman label,” Biosens. Bioelectron. 24(2), 216–221 (2008). [CrossRef] [PubMed]
  4. P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguide,” Appl. Phys. Lett. 90(21), 211107 (2007). [CrossRef]
  5. L. Su, C. J. Rowlands, and S. R. Elliott, “Nanostructures fabricated in chalcogenide glass for use as surface-enhanced Raman scattering substrates,” Opt. Lett. 34(11), 1645–1647 (2009). [CrossRef] [PubMed]
  6. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997). [CrossRef]
  7. R. J. C. Brown and J. T. Milton, “Nanostructures and nanostructured substrates for surface-enhanced Raman scattering (SERS),” J. Raman Spectrosc. 39(10), 1313–1326 (2008). [CrossRef]
  8. P. C. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86(17), 3391–3395 (1982). [CrossRef]
  9. H. Hada, Y. Yonezawa, A. Yoshida, and A. Kurakake, “Photoreduction of silver ion aqueous and alcoholic solutions,” J. Phys. Chem. 80(25), 2728–2731 (1976). [CrossRef]
  10. R. Sato-Berrú, R. Redón, A. Vázquez-Olmos, and J. M. Saniger, “Silver nanoparticles synthesized by direct photoreduction of metal salts. Application in surface-enhanced Raman spectroscopy,” J. Raman Spectrosc. 40(4), 376–380 (2009). [CrossRef]
  11. X. Tian, K. Chen, and G. Cao, “Seedless, surfactantless photoreduction synthesis of silver nanoplates,” Mater. Lett. 60(6), 828–830 (2006). [CrossRef]
  12. H. T. Tung, I. G. Chen, J. M. Song, and C. W. Yen, “Thermally assisted photoreduction of vertical silver nanowires,” J. Mater. Chem. 19(16), 2386–2391 (2009). [CrossRef]
  13. Z. Zhou, J. Xu, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Surface-enhanced Raman scattering substrate fabricated by femtosecond laser direct writing,” Jpn. J. Appl. Phys. 47(1), 189–192 (2008). [CrossRef]
  14. S. Maruo and T. Saeki, “Femtosecond laser direct writing of metallic microstructures by photoreduction of silver nitrate in a polymer matrix,” Opt. Express 16(2), 1174–1179 (2008). [CrossRef] [PubMed]
  15. A. Ishikawa, T. Tanaka, and S. Kawata, “Improvement in the reduction of silver ions in aqueous solution using two-photon sensitive dye,” Appl. Phys. Lett. 89(11), 113102 (2006). [CrossRef]
  16. S. J. Henley and S. R. P. Silva, “Laser direct write of silver nanoparticles from solution onto glass substrates for surface-enhanced Raman spectroscopy,” Appl. Phys. Lett. 91(2), 023107 (2007). [CrossRef]
  17. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent material,” Nat. Photonics 2(4), 219–225 (2008). [CrossRef]
  18. T. Wei, Y. Han, H. L. Tsai, and H. Xiao, “Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser,” Opt. Lett. 33(6), 536–538 (2008). [CrossRef] [PubMed]
  19. C. H. Lin, L. Jiang, H. Xiao, Y. H. Chai, S. J. Chen, and H. L. Tsai, “Fabry-Perot interferometer embedded in a glass chip fabricated by femtosecond laser,” Opt. Lett. 34(16), 2408–2410 (2009). [CrossRef] [PubMed]
  20. J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon- modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002). [CrossRef]
  21. C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Genin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 79, 1635–1641 (2004). [CrossRef]
  22. Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89(3), 033506 (2006). [CrossRef]
  23. E. D. Diebold, N. H. Mack, S. K. Doorn, and E. Mazur, “Femtosecond laser-nanostructured substrates for surface-enhanced Raman scattering,” Langmuir 25(3), 1790–1794 (2009). [CrossRef] [PubMed]
  24. M. Futamata and Y. Maruyama, “Electromagnetic and chemical interaction between Ag nanoparticles and adsorbed rhodamine molecules in surface-enhanced Raman scattering,” Anal. Bioanal. Chem. 388(1), 89–102 (2007). [CrossRef] [PubMed]
  25. Y. Han, C. H. Lin, H. Xiao, and H. L. Tsai, “Femtosecond laser-induced silicon surface morphology in water confinement,” Microsyst. Technol. 15(7), 1045–1049 (2009). [CrossRef]
  26. T. Kondo, K. Nishio, and H. Masuda, “Surface-enhanced Raman scattering in multilayered Au nanoparticles in anodic porous alumina matrix,” Appl. Phys. Express 2, 032001 (2009). [CrossRef]
  27. I. W. Sztainbuch, “The effects of Au aggregate morphology on surface-enhanced Raman scattering enhancement,” J. Chem. Phys. 125(12), 124707 (2006). [CrossRef] [PubMed]
  28. P. A. Temple and C. E. Hathaway, “Multiphonon Raman spectrum of silicon,” Phys. Rev. B 7(8), 3685–3697 (1973). [CrossRef]
  29. R. P. Van Duyne, J. C. Hulteen, and D. A. Treichel, “Atomic force microscopy and surface-enhanced Raman spectroscopy. 1. Ag island films and Ag film over polymer nanosphere surface supported on glass,” J. Chem. Phys. 99(3), 2101–2115 (1993). [CrossRef]
  30. G. L. Liu and L. P. Lee, “Nanowell surface enhanced Raman scattering arrays fabricated by soft-lithography for label-free biomolecular detections in integrated microfluidics,” Appl. Phys. Lett. 87(7), 074101 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited