OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 24 — Nov. 23, 2009
  • pp: 21738–21747

Multi-sample parallel estimation in volume holographic correlator for remote sensing image recognition

Shunli Wang, Qiaofeng Tan, Liangcai Cao, Qingsheng He, and Guofan Jin  »View Author Affiliations

Optics Express, Vol. 17, Issue 24, pp. 21738-21747 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1282 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Based on volume holographic correlator, a multi-sample parallel estimation method is proposed to implement remote sensing image recognition with high accuracy. The essential steps of the method including image preprocessing, estimation curves fitting, template images preparation and estimation equation establishing are discussed in detail. The experimental results show the validity of the multi-sample parallel estimation method, and the recognition accuracy is improved by increasing the sample numbers.

© 2009 OSA

OCIS Codes
(070.4550) Fourier optics and signal processing : Correlators
(090.7330) Holography : Volume gratings

ToC Category:
Fourier Optics and Signal Processing

Original Manuscript: August 27, 2009
Revised Manuscript: October 22, 2009
Manuscript Accepted: November 9, 2009
Published: November 12, 2009

Shunli Wang, Qiaofeng Tan, Liangcai Cao, Qingsheng He, and Guofan Jin, "Multi-sample parallel estimation in volume holographic correlator for remote 
sensing image recognition," Opt. Express 17, 21738-21747 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. W. Burr, F. H. Mok, and D. Psaltis, “Large-scale volume holographic storage in the long interaction length architecture,” Proc. SPIE 2297, 402–414 (1994). [CrossRef]
  2. Y. Takashima and L. Hesselink, “Media tilt tolerance of bit-based and page-based holographic storage systems,” Opt. Lett. 31(10), 1513–1515 (2006). [CrossRef] [PubMed]
  3. G. W. Burr, S. Kobras, H. Hanssen, and H. Coufal, “Content-addressable data storage by use of volume holograms,” Appl. Opt. 38(32), 6779–6784 (1999). [CrossRef] [PubMed]
  4. B. J. Goertzen and P. A. Mitkas, “Volume holographic storage for large relational databases,” Opt. Eng. 35(7), 1847–1853 (1996). [CrossRef]
  5. L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic Data Storage Systems,” in Proceedings of IEEE Conference on Digital Object Identifier (Institute of Electrical and Electronics Engineers, New York, 2004), pp. 1231–1280.
  6. A. Heifetz, J. T. Shen, J. K. Lee, R. Tripathi, and M. S. Shahriar, “Translation-invariant object recognition system using an optical correlator and a superparallel holographic random access memory,” Opt. Eng. 45(2), 1–5 (2006). [CrossRef]
  7. A. Pu, R. Denkewalter, and D. Psaltis, “Real-time vehicle navigation using a holographic memory,” Opt. Eng. 36(10), 2737–2746 (1997). [CrossRef]
  8. K. Ni, Z. Y. Qu, L. C. Cao, P. Su, Q. S. He, and G. F. Jin, “High accurate volume holographic correlator with 4000 parallel correlation channels,” Proc. SPIE 6827, 6827J (2007).
  9. K. Ni, W. Ren, Z. Y. Qu, L. C. Cao, Q. S. He, and G. F. Jin, “Phase-modulated multigroup volume holographic correlator,” Opt. Lett. 33(10), 1144–1146 (2008). [CrossRef] [PubMed]
  10. C. Ouyang, L. C. Cao, Q. S. He, Y. Liao, M. X. Wu, and G. F. Jin, “Sidelobe suppression in volume holographic optical correlators by use of speckle modulation,” Opt. Lett. 28(20), 1972–1974 (2003). [CrossRef] [PubMed]
  11. K. Ni, Z. Y. Qu, L. C. Cao, P. Su, Q. S. He, and G. F. Jin, “Improving accuracy of multichannel volume holographic correlators by using a two-dimensional interleaving method,” Opt. Lett. 32(20), 2972–2975 (2007). [CrossRef] [PubMed]
  12. J. Capon, “A Probabilistic Mode for Run Length Coding of Picture,” IEEE Trans. Inf. Theory 5(4), 157–163 (1959). [CrossRef]
  13. “S. Fumihiko, “Image template matching based on edge-spin correlation,” Electr. Eng. 153, 1592–1596 (2005).
  14. S. D. Wei and S. H. Lai, “Robust and efficient image alignment based on relative gradient matching,” IEEE Trans. Image Process. 15(10), 2936–2943 (2006). [CrossRef] [PubMed]
  15. T. S. Huang, “PCM Picture Transmission,” IEEE Spectr. 2, 57–63 (1965).
  16. L. E. Franks, “A Mode for the Random Video Process,” Bell Syst. Tech. J. 45, 609–630 (1966).
  17. H. Andrew, Jazwinskl, Stochastic process and filtering theory (New York and London,1970).
  18. P. M. Lundquist, C. Poga, R. G. Devoe, Y. Jia, W. E. Moerner, M.-P. Bernal, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic digital data storage in a photorefractive polymer,” Opt. Lett. 21(12), 890–892 (1996). [CrossRef] [PubMed]
  19. M.-P. Bernal, H. Coufal, R. K. Grygiel, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, P. Wimmer, and G. Wittmann, “A precision tester for studies for holographic optical storage materials and recording physics,” Appl. Opt. 35(14), 2360–2374 (1996). [CrossRef] [PubMed]
  20. R. V. Hogg, and A. T. Craig, Introduction to Mathematical Statistics (The Macmillan Company, 1959).
  21. A. Baraldi and F. Paramiggiani, “An investigation of the textural characteristics associated with gray level co-occurrence matrix statistical parameters,” IEEE Trans. Geosci. Rem. Sens. 3, 293–304 (1993).
  22. C. Rafael, Gonzalez, Digital image processing (New York, 2005).
  23. R. M. Haralick, K. Shanmugan, and I. H. Dinstein, “Textural features for image classification,” IEEE Trans. Syst. Man Cybern. 3(6), 610–621 (1973). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited