OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 24 — Nov. 23, 2009
  • pp: 21754–21761

Dependence of dynamic Lorentz frequency shift on carrier-envelope phase and including local field effects

Chaojin Zhang, Weifeng Yang, Xiaohong Song, and Zhizhan Xu  »View Author Affiliations

Optics Express, Vol. 17, Issue 24, pp. 21754-21761 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (173 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the local field effects in a ZnO dense medium. Our results show due to the local-field effects, the Lorentz shifts can be found in the reflected spectra driven by the few-cycle laser pulse. Moreover, the dynamic Lorentz shifts depend sensitively on the carrier-envelope phase (CEP) of the few-cycle laser pulse, which provides a useful means to obtain the CEP information by the frequency shifts.

© 2009 OSA

OCIS Codes
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(320.2250) Ultrafast optics : Femtosecond phenomena
(320.7150) Ultrafast optics : Ultrafast spectroscopy

ToC Category:
Ultrafast Optics

Original Manuscript: September 21, 2009
Revised Manuscript: October 30, 2009
Manuscript Accepted: November 2, 2009
Published: November 12, 2009

Chaojin Zhang, Weifeng Yang, Xiaohong Song, and Zhizhan Xu, "Dependence of dynamic Lorentz frequency shift on carrier-envelope phase and including local field effects," Opt. Express 17, 21754-21761 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Brabec and F. Krausz, “Intense few-cycle laser field: frontiers of nonlinear optics,” Rev. Mod. Phys. 72(2), 545–591 (2000). [CrossRef]
  2. S. Hughes, “Breakdown of the area theorem: carrier-wave Rabi flopping of femtosecond optical pulses,” Phys. Rev. Lett. 81(16), 3363–3366 (1998). [CrossRef]
  3. O. D. Mücke, T. Tritschler, M. Wegener, U. Morgner, and F. X. Kärtner, “Signatures of carrier-wave Rabi flopping in GaAs,” Phys. Rev. Lett. 87(5), 057401 (2001). [CrossRef] [PubMed]
  4. V. P. Kalosha and J. Herrmann, “Formation of optical subcycle pulses and full Maxwell-Bloch solitary waves by coherent propagation effects,” Phys. Rev. Lett. 83(3), 544–547 (1999). [CrossRef]
  5. O. D. Mücke, T. Tritschler, M. Wegener, U. Morgner, F. X. Kärtner, G. Khitrova, and H. M. Gibbs, “Carrier-wave Rabi flopping: role of the carrier-envelope phase,” Opt. Lett. 29(18), 2160–2162 (2004). [CrossRef] [PubMed]
  6. O. D. Mücke, T. Tritschler, M. Wegener, U. Morgner, and F. X. Kärtner, “Role of the carrier-envelope offset phase of few-cycle pulses in nonperturbative resonant nonlinear optics,” Phys. Rev. Lett. 89(12), 127401 (2002). [CrossRef] [PubMed]
  7. T. Tritschler, O. D. Mücke, M. Wegener, and F. X. Kärtner, “Evidence for third-harmonic generation in disguise of second-harmonic generation in extreme nonlinear optics,” Phys. Rev. Lett. 90(21), 217404 (2003). [CrossRef] [PubMed]
  8. C. Van Vlack and S. Hughes, “Third-harmonic generation in disguise of second-harmonic generation revisited: role of thin-film thickness and carrier-envelope phase,” Opt. Lett. 32(2), 187–189 (2007). [CrossRef] [PubMed]
  9. C. Zhang, X. Song, W. Yang, and Z. Xu, “Carrier-envelope phase control of carrier-wave Rabi flopping in asymmetric semiparabolic quantum well,” Opt. Express 16(3), 1487–1496 (2008). [CrossRef] [PubMed]
  10. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000). [CrossRef] [PubMed]
  11. G. G. Paulus, F. Grasbon, H. Walther, P. Villoresi, M. Nisoli, S. Stagira, E. Priori, and S. De Silvestri, “Absolute-phase phenomena in photoionization with few-cycle laser pulses,” Nature 414(6860), 182–184 (2001). [CrossRef] [PubMed]
  12. W. Yang, X. Song, R. Li, and Z. Xu, “Generation of intense extreme supercontinuum radiation via resonant propagation effects,” Phys. Rev. A 78(2), 023836 (2008). [CrossRef]
  13. C. Lemell, X. M. Tong, F. Krausz, and J. Burgdörfer, “Electron emission from metal surfaces by ultrashort pulses: determination of the carrier-envelope phase,” Phys. Rev. Lett. 90(7), 076403 (2003). [CrossRef] [PubMed]
  14. C. Van Vlack and S. Hughes, “Carrier-envelope-offset phase control of ultrafast optical rectification in resonantly excited semiconductors,” Phys. Rev. Lett. 98(16), 167404 (2007). [CrossRef] [PubMed]
  15. W. Yang, X. Song, S. Gong, Y. Cheng, and Z. Xu, “Carrier-envelope phase dependence of few-cycle ultrashort laser pulse propagation in a polar molecule medium,” Phys. Rev. Lett. 99(13), 133602 (2007). [CrossRef] [PubMed]
  16. C. Zhang, W. Yang, X. Song, and Z. Xu, “Carrier-envelope phase dependence of the spectra of reflected few-cycle laser pulses in the presence of a static electric field,” Phys. Rev. A 79(4), 043823 (2009). [CrossRef]
  17. C. Zhang, W. Yang, X. Song, and Z. Xu, “Phase control of higher spectral components in the presence of a static electric field,” J. Phys. B 42(5), 055602 (2009). [CrossRef]
  18. R. Friedberg, S. R. Hartmann, and J. T. Manassah, “Frequency shifts in emission and absorption by resonant systems of two-level atoms,” Phys. Rep. 7(3), 101–179 (1973). [CrossRef]
  19. K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991). [CrossRef] [PubMed]
  20. D. S. Chemla and D. A. B. Miller, “Mechanism for enhanced optical nonlinearities and bistability by combined dielectric-electronic confinement in semiconductor microcrystallites,” Opt. Lett. 11(8), 522–524 (1986). [CrossRef] [PubMed]
  21. M. E. Crenshaw, “Comparison of quantum and classical local-field effects on two-level atoms in a dielectric,” Phys. Rev. A 78(5), 053827 (2008). [CrossRef]
  22. C. M. Bowden and J. P. Dowling, “Near-dipole-dipole effects in dense media: Generalized Maxwell-Bloch equations,” Phys. Rev. A 47(2), 1247–1251 (1993). [CrossRef] [PubMed]
  23. M. G. Benedict, V. A. Malyshev, E. D. Trifonov, and A. I. Zaitsev, “Reflection and transmission of ultrashort light pulses through a thin resonant medium: Local-field effects,” Phys. Rev. A 43(7), 3845–3853 (1991). [CrossRef] [PubMed]
  24. E. Paspalakis, A. Kalini, and A. F. Terzis, “Local field effects in excitonic population transfer in a driven quantum dot system,” Phys. Rev. B 73(7), 073305 (2006). [CrossRef]
  25. D. V. Novitsky, “Compression of an intensive light pulse in photonic-band-gap structures with a dense resonant medium,” Phys. Rev. A 79(2), 023828 (2009). [CrossRef]
  26. J. T. Manassah and B. Gross, “The dynamical lorentz shift in an extended optically dense superradiant amplifier,” Opt. Express 1(6), 141–151 (1997). [CrossRef] [PubMed]
  27. M. E. Crenshaw, M. Scalora, and C. M. Bowden, “Ultrafast intrinsic optical switching in a dense medium of two-level atoms,” Phys. Rev. Lett. 68(7), 911–914 (1992). [CrossRef] [PubMed]
  28. J. J. Maki, M. S. Malcuit, J. E. Sipe, and R. W. Boyd, “Linear and nonlinear optical measurements of the Lorentz local field,” Phys. Rev. Lett. 67(8), 972–975 (1991). [CrossRef] [PubMed]
  29. H. Van Kampen, V. A. Sautenkov, C. J. C. Smeets, E. R. Eliel, and J. P. Woerdman, “Measurement of the excitation dependence of the Lorentz local-field shift,” Phys. Rev. A 59(1), 271–274 (1999). [CrossRef]
  30. M. E. Crenshaw, K. U. Sullivan, and C. M. Bowden, “Local field effects in multicomponent media,” Opt. Express 1(6), 152–159 (1997). [CrossRef] [PubMed]
  31. R. Friedberg, S. R. Hartmann, and J. T. Manassah, “Effects of the dynamic Lorentz shift on four-wave parametric interactions in a strongly driven two-level system,” Phys. Rev. A 42(1), 494–497 (1990). [CrossRef] [PubMed]
  32. R. Friedberg, S. R. Hartmann, and J. T. Manassah, “Effect of local-field correction on a strongly pumped resonance,” Phys. Rev. A 40(5), 2446–2451 (1989). [CrossRef] [PubMed]
  33. K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966). [CrossRef]
  34. R. W. Ziolkowski, J. M. Arnold, and D. M. Gogny, “Ultrafast pulse interactions with two-level atoms,” Phys. Rev. A 52(4), 3082–3094 (1995). [CrossRef] [PubMed]
  35. X. Song, S. Gong, S. Jin, and Z. Xu, “Formation of higher spectral components in a two-level medium driven by two-color ultrashort laser pulses,” Phys. Rev. A 69(1), 015801 (2004). [CrossRef]
  36. X. Song, S. Gong, and Z. Xu, “Propagation of a few-cycle laser pulse in a V-type three-level system,” Opt. Spectrosc. 99(4), 517–521 (2005). [CrossRef]
  37. W. Yang, S. Gong, and Z. Xu, “Enhancement of ultrafast four-wave mixing in a polar molecule medium,” Opt. Express 14(16), 7216–7223 (2006). [CrossRef] [PubMed]
  38. J. Xiao, Z. Wang, and Z. Xu, “Area evolution of a few-cycle pulse laser in a two-level-atom medium,” Phys. Rev. A 65(3), 031402 (2002). [CrossRef]
  39. G. Mur, “Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations,” IEEE Trans. Electromagn. Compat. EMC-23(4), 377–382 (1981). [CrossRef]
  40. A. Taflove and M. E. Brodwin, “Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations,” IEEE Trans. Microw. Theory Tech. 23(8), 623–630 (1975). [CrossRef]
  41. K. Xia, S. Gong, C. Liu, X. Song, and Y. Niu, “Near dipole-dipole effects on the propagation of few-cycle pulse in a dense two-level medium,” Opt. Express 13(16), 5913–5924 (2005). [CrossRef] [PubMed]
  42. C. W. Luo, K. Reimann, M. Woerner, T. Elsaesser, R. Hey, and K. H. Ploog, “Phase-resolved nonlinear response of a two-dimensional electron gas under femtosecond intersubband excitation,” Phys. Rev. Lett. 92(4), 047402 (2004). [CrossRef] [PubMed]
  43. A. Brown and W. J. Meath, “On the effects of absolute laser phase on the interaction of a pulsed laser with polar versus nonpolar molecules,” J. Chem. Phys. 109(21), 9351–9365 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited