OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 24 — Nov. 23, 2009
  • pp: 21762–21772

In vivo dynamic optical coherence elastography using a ring actuator

Brendan F. Kennedy, Timothy R. Hillman, Robert A. McLaughlin, Bryden C. Quirk, and David D. Sampson  »View Author Affiliations


Optics Express, Vol. 17, Issue 24, pp. 21762-21772 (2009)
http://dx.doi.org/10.1364/OE.17.021762


View Full Text Article

Enhanced HTML    Acrobat PDF (324 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a novel sample arm arrangement for dynamic optical coherence elastography based on excitation by a ring actuator. The actuator enables coincident excitation and imaging to be performed on a sample, facilitating in vivo operation. Sub-micrometer vibrations in the audio frequency range were coupled to samples that were imaged using optical coherence tomography. The resulting vibration amplitude and microstrain maps are presented for bilayer silicone phantoms and multiple skin sites on a human subject. Contrast based on the differing elastic properties is shown, notably between the epidermis and dermis. The results constitute the first demonstration of a practical means of performing in vivo dynamic optical coherence elastography on a human subject.

© 2009 OSA

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(290.5820) Scattering : Scattering measurements
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: September 25, 2009
Revised Manuscript: November 5, 2009
Manuscript Accepted: November 6, 2009
Published: November 12, 2009

Virtual Issues
Vol. 4, Iss. 13 Virtual Journal for Biomedical Optics

Citation
Brendan F. Kennedy, Timothy R. Hillman, Robert A. McLaughlin, Bryden C. Quirk, and David D. Sampson, "In vivo dynamic optical coherence elastography using a ring actuator," Opt. Express 17, 21762-21772 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-24-21762


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng. 5(1), 57–78 (2003). [CrossRef] [PubMed]
  2. M. Fatemi, A. Manduca, and J. F. Greenleaf, “Imaging elastic properties of biological tissues by low-frequency harmonic vibration,” Proc. IEEE 91(10), 1503–1519 (2003). [CrossRef]
  3. L. Gao, K. J. Parker, R. M. Lerner, and S. F. Levinson, “Imaging of elastic properties of tissue--a review,” Ultrasound Med. Biol. 22(8), 959–977 (1996). [CrossRef] [PubMed]
  4. J. Ophir, I. Cespedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13(2), 186–210 (1991). [CrossRef] [PubMed]
  5. C. L. De Korte, A. F. W. Van Der Steen, E. I. Céspedes, and G. Pasterkamp, “Intravascular ultrasound elastography in human arteries: initial experience in vitro,” Ultrasound Med. Biol. 24(3), 401–408 (1998). [CrossRef] [PubMed]
  6. R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 (1995). [CrossRef] [PubMed]
  7. A. Manduca, T. E. Oliphant, M. A. Dresner, J. L. Mahowald, S. A. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: non-invasive mapping of tissue elasticity,” Med. Image Anal. 5(4), 237–254 (2001). [CrossRef] [PubMed]
  8. A. L. McKnight, J. L. Kugel, P. J. Rossman, A. Manduca, L. C. Hartmann, and R. L. Ehman, “MR elastography of breast cancer: preliminary results,” AJR Am. J. Roentgenol. 178(6), 1411–1417 (2002). [PubMed]
  9. A. Itoh, E. Ueno, E. Tohno, H. Kamma, H. Takahashi, T. Shiina, M. Yamakawa, and T. Matsumura, “Breast disease: clinical application of US elastography for diagnosis,” Radiology 239(2), 341–350 (2006). [CrossRef] [PubMed]
  10. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  11. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24(17), 1221–1223 (1999). [CrossRef] [PubMed]
  12. J. M. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express 3(6), 199–211 (1998). [CrossRef] [PubMed]
  13. R. C. Chan, A. H. Chau, W. C. Karl, S. Nadkarni, A. S. Khalil, N. Iftimia, M. Shishkov, G. J. Tearney, M. R. Kaazempur-Mofrad, and B. E. Bouma, “OCT-based arterial elastography: robust estimation exploiting tissue biomechanics,” Opt. Express 12(19), 4558–4572 (2004). [CrossRef] [PubMed]
  14. J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, “Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues,” Heart 90(5), 556–562 (2004). [CrossRef] [PubMed]
  15. H. J. Ko, W. Tan, R. Stack, and S. A. Boppart, “Optical coherence elastography of engineered and developing tissue,” Tissue Eng. 12(1), 63–73 (2006). [CrossRef] [PubMed]
  16. R. K. Wang, Z. H. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89(14), 144103 (2006). [CrossRef]
  17. S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express 14(24), 11585–11597 (2006). [CrossRef] [PubMed]
  18. X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties,” Opt. Express 16(15), 11052–11065 (2008). [CrossRef] [PubMed]
  19. P. A. Edney and J. T. Walsh, “Acoustic modulation and photon-phonon scattering in optical coherence tomography,” Appl. Opt. 40(34), 6381–6388 (2001). [CrossRef] [PubMed]
  20. S. G. Adie, B. F. Kennedy, J. J. Armstrong, S. A. Alexandrov, and D. D. Sampson, “Audio frequency in vivo optical coherence elastography,” Phys. Med. Biol. 54(10), 3129–3139 (2009). [CrossRef] [PubMed]
  21. T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imaging 20(4), 260–274 (1998). [PubMed]
  22. R. O. Potts, D. A. Chrisman, and E. M. Buras., “The dynamic mechanical properties of human skin in vivo,” J. Biomech. 16(6), 365–372 (1983). [CrossRef] [PubMed]
  23. A. V. Zvyagin, E. D. J. Smith, and D. D. Sampson, “Delay and dispersion characteristics of a frequency-domain optical delay line for scanning interferometry,” J. Opt. Soc. Am. A 20(2), 333–341 (2003). [CrossRef]
  24. E. Udd, Fibre Optic Sensors: An Introduction for Engineers and Scientists (Wiley New York, 1991).
  25. Y. H. Zhao, Z. P. Chen, Z. H. Ding, H. W. Ren, and J. S. Nelson, “Real-time phase-resolved functional optical coherence tomography by use of optical Hilbert transformation,” Opt. Lett. 27(2), 98–100 (2002). [CrossRef] [PubMed]
  26. O. Sasaki and H. Okazaki, “Sinusoidal phase modulating interferometry for surface profile measurement,” Appl. Opt. 25(18), 3137–3140 (1986). [CrossRef] [PubMed]
  27. D. D. Sampson, and T. R. Hillman, “Optical coherence tomography,” in Lasers And Current Optical Techniques In Biology, G. Palumbo and R. Pratesi, eds. (ESP Comprehensive Series in Photosciences, Cambridge, UK, 2004) pp. 481–571.
  28. S. Jiang, B. W. Pogue, T. O. McBride, M. M. Doyley, S. P. Poplack, and K. D. Paulsen, “Near-infrared breast tomography calibration with optoelastic tissue simulating phantoms,” J. Electron. Imaging 12(4), 613–620 (2003). [CrossRef]
  29. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006). [CrossRef] [PubMed]
  30. C.-E. Bisaillon, G. Lamouche, R. Macielko, M. Dufour, and J.-P. Monchalin, “Deformable and durable phantoms with controlled density of scatterers,” Phys. Med. Biol. 53(13), 237–247 (2008). [CrossRef]
  31. E. J. Chen, J. Novakofski, W. Kenneth Jenkins, and W. D. O’Brien Jr, “Young’s modulus measurements of soft tissues with application to elastic imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43(1), 191–194 (1996). [CrossRef]
  32. F. H. Silver, J. W. Freeman, and D. DeVore, “Viscoelastic properties of human skin and processed dermis,” Skin Res. Technol. 7(1), 18–23 (2001). [CrossRef] [PubMed]
  33. K. J. Parker, L. S. Taylor, S. Gracewski, and D. J. Rubens, “A unified view of imaging the elastic properties of tissue,” J. Acoust. Soc. Am. 117(5), 2705–2712 (2005). [CrossRef] [PubMed]
  34. J. T. Whitton and J. D. Everall, “The thickness of the epidermis,” Br. J. Dermatol. 89(5), 467–476 (1973). [CrossRef] [PubMed]
  35. T. Gambichler, R. Matip, G. Moussa, P. Altmeyer, and K. Hoffmann, “In vivo data of epidermal thickness evaluated by optical coherence tomography: effects of age, gender, skin type, and anatomic site,” J. Dermatol. Sci. 44(3), 145–152 (2006). [CrossRef] [PubMed]
  36. M. Mogensen, H. A. Morsy, L. Thrane, and G. B. E. Jemec, “Morphology and epidermal thickness of normal skin imaged by optical coherence tomography,” Dermatology 217(1), 14–20 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited