OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 24 — Nov. 23, 2009
  • pp: 21808–21812

ZnO subwavelength wires for fast-response mid-infrared detection

Wei Dai, Qing Yang, Fuxing Gu, and Limin Tong  »View Author Affiliations

Optics Express, Vol. 17, Issue 24, pp. 21808-21812 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (185 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Room temperature operating thermal detection for mid-infrared light based on ZnO subwavelength wires has been demonstrated. Electric resistance in ZnO wires increases linearly with the intensity of incident light. Noise equivalent power (NEP) of 5.8 μW/Hz1/2 (at 1 kHz) with typical response times as fast as 1.3 ms is obtained at 10.6-μm wavelength. The sensitivity and response time of the detector are also found to be insensitive to the ambient.

© 2009 OSA

OCIS Codes
(230.0040) Optical devices : Detectors
(230.3990) Optical devices : Micro-optical devices
(040.6808) Detectors : Thermal (uncooled) IR detectors, arrays and imaging

ToC Category:

Original Manuscript: October 23, 2009
Revised Manuscript: November 6, 2009
Manuscript Accepted: November 6, 2009
Published: November 12, 2009

Wei Dai, Qing Yang, Fuxing Gu, and Limin Tong, "ZnO subwavelength wires for fast-response mid-infrared detection," Opt. Express 17, 21808-21812 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Rogalski, “Infrared detectors: an overview,” Infrared Phys. Technol. 43(3-5), 187–210 (2002). [CrossRef]
  2. M. Jackson, M. G. Sowa, and H. H. Mantsch, “Infrared spectroscopy: a new frontier in medicine,” Biophys. Chem. 68(1-3), 109–125 (1997). [CrossRef] [PubMed]
  3. P. G. Datskos, P. I. Oden, T. Thundat, E. A. Wachter, R. J. Warmack, and S. R. Hunter, “Remote infrared radiation detection using piezoresistive microcantilevers,” Appl. Phys. Lett. 69(20), 2986–2988 (1996). [CrossRef]
  4. P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002). [CrossRef]
  5. K. Karstad, A. Stefanov, M. Wegmuller, H. Zbinden, N. Gisin, T. Aellen, M. Beck, and J. Faist, “Detection of mid-IR radiation by sum frequency generation for free space optical communication,” Opt. Lasers Eng. 43(3-5), 537–544 (2005). [CrossRef]
  6. B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, “Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors,” Appl. Phys. Lett. 73(6), 735–737 (1998). [CrossRef]
  7. D. P. Neikirk, W. W. Lam, and D. B. Rutledge, “Far-infrared microbolometer detectors,” Int. J. Infrared Millim. Waves 5(3), 245–278 (1984). [CrossRef]
  8. Y. W. Heo, D. P. Norton, L. C. Tien, Y. Kwon, B. S. Kang, F. Ren, S. J. Pearton, and J. R. LaRoche, “ZnO nanowire growth and devices,” Mater. Sci. Eng. Rep. 47(1-2), 1–47 (2004). [CrossRef]
  9. V. R. Mehta, S. Shet, N. M. Ravindra, A. T. Fiory, and M. P. Lepselter, “Silicon-integrated uncooled infrared detectors: perspectives on thin films and microstructures,” J. Electron. Mater. 34(5), 484–490 (2005). [CrossRef]
  10. S. Herminjard, L. Sirigu, H. P. Herzig, E. Studemann, A. Crottini, J. P. Pellaux, T. Gresch, M. Fischer, and J. Faist, “Surface Plasmon Resonance sensor showing enhanced sensitivity for CO2 detection in the mid-infrared range,” Opt. Express 17(1), 293–303 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-1-293 . [CrossRef] [PubMed]
  11. H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater. 14(2), 158–160 (2002). [CrossRef]
  12. J. Suehiro, N. Nakagawa, S. Hidaka, M. Ueda, K. Imasaka, M. Higashihata, T. Okada, and M. Hara, “Dielectrophoretic fabrication and characterization of a ZnO anowire-based UV photosensor,” Nanotechnology 17(10), 2567–2573 (2006). [CrossRef] [PubMed]
  13. S. Kumar, V. Gupta, and K. Sreenivas, “Synthesis of photoconducting ZnO nano-needles using an unbalanced magnetron sputtered ZnO/Zn/ZnO multilayer structure,” Nanotechnology 16(8), 1167–1171 (2005). [CrossRef]
  14. Q. H. Li, T. Gao, Y. G. Wang, and T. H. Wang, “Adsorption and desorption of oxygen probed from ZnO nanowire films by photocurrent measurements,” Appl. Phys. Lett. 86(12), 123117 (2005). [CrossRef]
  15. Y. W. Heo, L. C. Tien, D. P. Norton, B. S. Kang, F. Ren, B. P. Gila, and S. J. Pearton, “Electrical transport properties of single ZnO nanorods,” Appl. Phys. Lett. 85(11), 2002–2004 (2004). [CrossRef]
  16. C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007). [CrossRef] [PubMed]
  17. E. Schlenker, A. Bakin, T. Weimann, P. Hinze, D. H. Weber, A. Gölzhäuser, H.-H. Wehmann, and A. Waag, “On the difficulties in characterizing ZnO nanowires,” Nanotechnology 19(36), 365707 (2008). [CrossRef] [PubMed]
  18. J. Goldberger, D. J. Sirbuly, M. Law, and P. D. Yang, “ZnO nanowire transistors,” J. Phys. Chem. B 109(1), 9–14 (2005). [CrossRef] [PubMed]
  19. P. J. Li, Z. M. Liao, X. Z. Zhang, X. J. Zhang, H. C. Zhu, J. Y. Gao, K. Laurent, Y. Leprince-Wang, N. Wang, and D. P. Yu, “Electrical and photoresponse properties of an intramolecular p-n homojunction in single phosphorus-doped ZnO nanowires,” Nano Lett. 9(7), 2513–2518 (2009). [CrossRef] [PubMed]
  20. J. B. K. Law and J. T. L. Thong, “Simple fabrication of a ZnO nanowire photodetector with a fast photoresponse time,” Appl. Phys. Lett. 88(13), 133114 (2006). [CrossRef]
  21. S. E. Ahn, J. S. Lee, H. Kim, S. Kim, B. H. Kang, K. H. Kim, and G. T. Kim, “Photoresponse of sol-gel-synthesized ZnO nanorods,” Appl. Phys. Lett. 84(24), 5022–5024 (2004). [CrossRef]
  22. V. Srikant and D. R. Clarke, “On the optical band gap of zinc oxide,” J. Appl. Phys. 83(10), 5447–5451 (1998). [CrossRef]
  23. J. Wang, J. Sha, Q. Yang, X. Y. Ma, H. Zhang, J. Yu, and D. R. Yang, “Carbon-assisted synthesis of aligned ZnO nanowires,” Mater. Lett. 59(21), 2710–2714 (2005). [CrossRef]
  24. S. K. Mitra, Digital Signal Processing: A Computer Based Approach (McGraw-Hill, New York, 2001).
  25. H. Wang, X. Yi, G. Huang, J. Xiao, X. Li, and S. Chen, “IR microbolometer with self-supporting structure operating at room temperature,” Infrared Phys. Technol. 45(1), 53–57 (2004). [CrossRef]
  26. M. Garcia, R. Ambrosio, A. Torres, and A. Kosarev, “IR bolometers based on amorphous silicon germanium alloys,” J. Non-Cryst. Solids 338-340, 744–748 (2004). [CrossRef]
  27. E. Iborra, M. Clement, L. V. Herrero, and J. Sangrador, “IR uncooled bolometers based on amorphous GexSi1-xOy on silicon micromachined structures,” J. Microelectromech. Syst. 11(4), 322–329 (2002). [CrossRef]
  28. P. G. Datskos, N. V. Lavrik, and S. Rajic, “Performance of uncooled microcantilever thermal detectors,” Rev. Sci. Instrum. 75(4), 1134–1148 (2004). [CrossRef]
  29. K. Kim, J. Y. Park, Y. H. Han, H. K. Kang, H. J. Shin, S. Moon, and J. H. Park, “3D-feed horn antenna-coupled microbolometer,” Sens. Actuator. A 110,196–205 (2004). [CrossRef]
  30. J. P. Ploteau, P. Glouannec, and H. Noel, “Conception of thermoelectric flux meters for infrared radiation measurements in industrial furnaces,” Appl. Therm. Eng. 27(2-3), 674–681 (2007). [CrossRef]
  31. J. Fonollosaa, M Carmona, J Santander, L Fonseca, M Moreno, and S. Marco, “Limits to the integration of filters and lenses on thermoelectric IR detectors by flip-chip techniques,” Sens. Actuator A 149,65–73 (2009). [CrossRef]
  32. R. A. Robie, H. T. Haselton, and B. S. Hemingway, “Heat capacities and energies at 298.15 K of MgTiO3 (geikielite), ZnO (zincite), and ZnCO3 (smithsonite),” J. Chem. Thermodyn. 21(7), 743–749 (1989). [CrossRef]
  33. T. Olorunyulemi, A. Birnboim, Y. Carmel, O. C. Wilson, and I. K. Lloyd, “Thermal conductivity of zinc oxide: from green to sintered state,” J. Am. Ceram. Soc. 85, 1249–1253 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited