OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 24 — Nov. 23, 2009
  • pp: 21891–21896

Devil’s vortex-lenses

Walter D. Furlan, Fernando Giménez, Arnau Calatayud, and Juan A. Monsoriu  »View Author Affiliations


Optics Express, Vol. 17, Issue 24, pp. 21891-21896 (2009)
http://dx.doi.org/10.1364/OE.17.021891


View Full Text Article

Enhanced HTML    Acrobat PDF (1001 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper we present a new kind of vortex lenses in which the radial phase distribution is characterized by the “devil’s staircase” function. The focusing properties of these fractal DOEs coined Devil’s vortex-lenses are analytically studied and the influence of the topological charge is investigated. It is shown that under monochromatic illumination a vortex devil’s lens give rise a focal volume containing a delimited chain of vortices that are axially distributed according to the self-similarity of the lens.

© 2009 OSA

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(050.1970) Diffraction and gratings : Diffractive optics

ToC Category:
Diffraction and Gratings

History
Original Manuscript: June 16, 2009
Revised Manuscript: July 31, 2009
Manuscript Accepted: September 3, 2009
Published: November 16, 2009

Citation
Walter D. Furlan, Fernando Giménez, Arnau Calatayud, and Juan A. Monsoriu, "Devil’s vortex-lenses," Opt. Express 17, 21891-21896 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-24-21891


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. S. Roux, “Distribution of angular momentum and vortex morphology in optical beams,” Opt. Commun. 242(1–3), 45–55 (2004). [CrossRef]
  2. G. Gbur and T. D. Visser, “Phase singularities and coherence vortices in linear optical systems,” Opt. Commun. 259(2), 428–435 (2006). [CrossRef]
  3. N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17(3), 221–223 (1992). [CrossRef] [PubMed]
  4. W. M. Lee, X. C. Yuan, and W. C. Cheong, “Optical vortex beam shaping by use of highly efficient irregular spiral phase plates for optical micromanipulation,” Opt. Lett. 29(15), 1796–1798 (2004). [CrossRef] [PubMed]
  5. S. H. Tao, X.-C. Yuan, J. Lin, and R. Burge, “Sequence of focused optical vortices generated by a spiral fractal zone plates,” Appl. Phys. Lett. 89(3), 031105 (2006). [CrossRef]
  6. G. Saavedra, W. D. Furlan, and J. A. Monsoriu, “Fractal zone plates,” Opt. Lett. 28(12), 971–973 (2003). [CrossRef] [PubMed]
  7. J. A. Monsoriu, G. Saavedra, and W. D. Furlan, “Fractal zone plates with variable lacunarity,” Opt. Express 12(18), 4227–4234 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-18-4227 . [CrossRef] [PubMed]
  8. J. A. Davis, L. Ramirez, J. A. Martín-Romo, T. Alieva, and M. L. Calvo, “Focusing properties of fractal zone plates: experimental implementation with a liquid-crystal display,” Opt. Lett. 29(12), 1321–1323 (2004). [CrossRef] [PubMed]
  9. H.-T. Dai, X. Wang, and K.-S. Xu, “Focusing properties of fractal zone plates with variable lacunarity: experimental studies based on liquid crystal on silicon,” Chin. Phys. Lett. 22(11), 2851–2854 (2005). [CrossRef]
  10. C. Martelli and J. Canning, “Fresnel Fibres with Omnidirectional Zone Cross-sections,” Opt. Express 15(7), 4281–4286 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-7-4281 . [CrossRef] [PubMed]
  11. F. Giménez, J. A. Monsoriu, W. D. Furlan, and A. Pons, “Fractal photon sieve,” Opt. Express 14(25), 11958–11963 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-25-11958 . [CrossRef] [PubMed]
  12. J. A. Monsoriu, W. D. Furlan, G. Saavedra, and F. Giménez, “Devil’s lenses,” Opt. Express 15(21), 13858–13864 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-21-13858 . [CrossRef] [PubMed]
  13. D. R. Chalice, “A characterization of the Cantor function,” Am. Math. Mon. 98(3), 255–258 (1991). [CrossRef]
  14. F. Doveil, A. Macor, and Y. Elskens, “Direct observation of a devil’s staircase in wave-particle interaction,” Chaos 16(3), 033103 (2006). [CrossRef] [PubMed]
  15. M. Hupalo, J. Schmalian, and M. C. Tringides, “Devil’s staircase” in Pb/Si(111) ordered phases,” Phys. Rev. Lett. 90(21), 216106 (2003). [CrossRef] [PubMed]
  16. Y. F. Chen, T. H. Lu, K. W. Su, and K. F. Huang, “Devil’s staircase in three-dimensional coherent waves localized on Lissajous parametric surfaces,” Phys. Rev. Lett. 96(21), 213902 (2006). [CrossRef] [PubMed]
  17. D. Wu, L.-G. Niu, Q.-D. Chen, R. Wang, and H.-B. Sun, “High efficiency multilevel phase-type fractal zone plates,” Opt. Lett. 33(24), 2913–2915 (2008). [CrossRef] [PubMed]
  18. G. A. Swartzlander., “Peering into darkness with a vortex spatial filter,” Opt. Lett. 26(8), 497–499 (2001). [CrossRef] [PubMed]
  19. K. Crabtree, J. A. Davis, and I. Moreno, “Optical processing with vortex-producing lenses,” Appl. Opt. 43(6), 1360–1367 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (1661 KB)      QuickTime
» Media 2: AVI (2233 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited